Synthetic biodegradable and bio-based polymers have emerged as sustainable alternatives to nonrenewable petroleum-derived polymers which cause serious environmental issues. In particular, polyhydroxyalkanoates (PHA) are promising biopolymers owing to their outstanding biodegradability and biocompatibility. The production of the homopolymer poly(3-hydroxybutyrate) (PHB) and copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from type II methanotrophs via microbial fermentation was presented. For the efficient extraction and recovery of intracellular PHA from methanotrophs, different extraction approaches were investigated including solvent extraction using 1,3-dioxolane as a green solvent, integrated cell lysis and solvent extraction, and cell digestion without the use of organic solvents. Among various extraction approaches, the integrated method exhibited the highest extraction performance, with PHA recovery and purity exceeding 91 % and 93 %, respectively, even when the PHA content of the cells was low. Furthermore, the molecular weight, thermal stability, and mechanical properties of the recovered PHA were comprehensively analyzed to suggest its suitable practical applications. The obtained properties were comparable to that of the commercial PHA products and PHA produced from other microbial species, indicating an efficient recovery of high-quality PHA produced from methanotrophs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.128687 | DOI Listing |
Bioresour Technol
December 2024
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China. Electronic address:
Aerobic methanotrophs play a crucial role in controlling methane emission in wastewater treatment. However, the high nitrite produced during ammonium oxidation, nitrate assimilation, and denitrification hinders methane oxidation and nitrogen removal. In this study, Methylomonas sp.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain. Electronic address:
Today, the use of biogas to produce more sustainable bioproducts is attracting an increasing attention in the quest for a circular economy. This work aims at optimizing the biosynthesis of high value bioproducts such as ectoine and hydroxyectoine from methane using a high mass transfer Taylor flow reactor and a methanotrophic consortium. The influence of the gas residence time (30-240 min) and concentration of microorganisms (0.
View Article and Find Full Text PDFBioresour Technol
December 2024
Power China Guiyang Engineering Corporation Limited, Guiyang 550081, China.
Methanotroph could facilitate nitrogen removal during methane oxidation, and promote conversion of organic compounds by producing methane monooxygenase. Co-metabolic effect and mechanism of aerobic methane oxidation on the removal of nitrogen and organic matter from Baijiu wastewater were investigated using an improved denitrifying biological filter. It was found that the average removal efficiency of chemical oxygen demand (COD), total nitrogen (TN) and chroma increased by 17 %, 22 % and 10 % in reactor B with methane compared to reactor A with air only.
View Article and Find Full Text PDFMicroorganisms
October 2024
Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico.
Int J Mol Sci
November 2024
Department of Computational Biology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia.
Biotechnology continues to drive innovation in the production of pharmaceuticals, biofuels, and other valuable compounds, leveraging the power of microbial systems for enhanced yield and sustainability. Genome-scale metabolic (GSM) modeling has become an essential approach in this field, which enables a guide for targeting genetic modifications and the optimization of metabolic pathways for various industrial applications. While single-species GSM models have traditionally been employed to optimize strains like and , the integration of these models into community-based approaches is gaining momentum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!