Synthesis, antibiofilm activity and molecular docking of N-acylhomoserine lactones containing cinammic moieties.

Bioorg Med Chem Lett

Department of Organic Chemistry, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico. Electronic address:

Published: January 2024

We prepared a series of cinnamoyl-containing furanones by an affordable and short synthesis. The nineteen compounds hold a variety of substituents including electron-donating, electron-withdrawing, bulky and meta-substituted phenyls, as well as heterocyclic rings. Compounds showed antibiofilm activity in S. aureus, K. pneumoniae and, more pronounced, against P. aeruginosa. The disruption of quorum sensing (QS) was tested using the violacein test and molecular docking predicted the antagonism of LasR as a plausible mechanism of action. The trimethoxylated and diene derivatives showed the best antibiofilm and anti-QS properties, thus becoming candidates for further modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2023.129592DOI Listing

Publication Analysis

Top Keywords

antibiofilm activity
8
molecular docking
8
synthesis antibiofilm
4
activity molecular
4
docking n-acylhomoserine
4
n-acylhomoserine lactones
4
lactones cinammic
4
cinammic moieties
4
moieties prepared
4
prepared series
4

Similar Publications

Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.

View Article and Find Full Text PDF

Peri-implantitis associated with dental implants shares characteristics with destructive periodontal diseases. Both conditions are multifactorial and strongly correlated with the presence of microorganisms surrounding the prostheses or natural dentition. This study aimed to evaluate the antimicrobial activity and toxicity of a mucoadhesive hydrogel functionalized with aminochalcone (HAM-15) against Aggregatibacter actinomycetemcomitans, Fusobacterium periodonticum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Candida albicans.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli-targeting phages for biofilm biocontrol in the poultry industry.

Vet Microbiol

January 2025

Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland. Electronic address:

Avian pathogenic Escherichia coli (APEC) is a principal etiologic agent of avian colibacillosis, responsible for significant economic losses in the poultry industry due to high mortality and disease treatment with antibiotics. APEC and its ability to form biofilms on food and processing surfaces contributes to its persistence within farms. Bacteriophages are promising antibacterial agents for combating APEC.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), known for their health benefits, exhibit antimicrobial and antibiofilm properties. This study investigated the cell-free supernatant (CFS) of spp., particularly KR3, against the common foodborne pathogens , and spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!