Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wave functions on periodic lattices are commonly described by Bloch band theory. Besides Abelian Bloch states labeled by a momentum vector, hyperbolic lattices support non-Abelian Bloch states that have so far eluded analytical treatments. By adapting the solid-state-physics notions of supercells and zone folding, we devise a method for the systematic construction of non-Abelian Bloch states. The method applies Abelian band theory to sequences of supercells, recursively built as symmetric aggregates of smaller cells, and enables a rapidly convergent computation of bulk spectra and eigenstates for both gapless and gapped tight-binding models. Our supercell method provides an efficient means of approximating the thermodynamic limit and marks a pivotal step toward a complete band-theoretic characterization of hyperbolic lattices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.226401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!