Graphene has emerged as a highly promising nanomaterial for a variety of advanced technologies, including batteries, energy, electronics, and biotechnologies. Its recent contribution to neurotechnology is particularly noteworthy because its superior conductivity, chemical resilience, biocompatibility, thermal stability, and scalable nature make it well-suited for measuring brain activity and plasticity in health and disease. Graphene-mediated compounds are microfabricated in two central methods: chemical processes with natural graphite and chemical vapor deposition of graphene in a film form. They are widely used as biosensors and bioelectronics for neurodiagnostic and neurotherapeutic purposes in several brain disorders, such as Parkinson's disease, stroke, glioma, epilepsy, tinnitus, and Alzheimer's disease. This review provides an overview of studies that have demonstrated the technical advances of graphene nanomaterials in neuroscientific and clinical applications. We also discuss current limitations and future demands in relation to the clinical application of graphene, highlighting its potential technological and clinical significance for treating brain disorders. Our review underscores the potential of graphene nanomaterials as powerful tools for advancing the understanding of the brain and developing new therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2023.115906 | DOI Listing |
ACS Nano
January 2025
The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan.
The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.
View Article and Find Full Text PDFSci Rep
January 2025
College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, 163319, China.
Maize seedlings in cold regions and high latitude often face abiotic stress. As a result, weak seedlings affect maize production, The commonly used seed coating agents in production are mainly to prevent biological stress of pests and diseases, and have little effect on seedling vigor and abiotic resistance. In this experiment, the combination of graphene oxide (GO) and seed coating agent can effectively prevent pests and diseases and increase the growth of seedlings.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia.
Objective: This article provides a substantial review of recent research and comparison on molecular dynamics potentials to determine which are most suitable for simulating the phenomena in graphene-based nanomaterials (GBNs).
Significance: GBNs gain significant attention due to their remarkable properties and potential applications, notably in nanomedicine. However, the physical and chemical characteristics toward macromolecules that justify their nanomedical applications are not yet fully understood.
Sci Rep
January 2025
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
The g-C3N4/CS biosensor was designed, fabricated, and tested using compounds such as glucose, urine, lactose, and flutamide at a molarity of 10 µM, which could demonstrate a high sensitivity of 200 μm-1 for flutamide. Powerful effective medium theory and FDTD simulation were used to predict the most favorable mode and plasmonic properties of a graphite carbon nitride and chitosan nanocomposite. The research also explores the characteristics of surface plasmon resonance exhibited by the nanocomposite as the chitosan content is adjusted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!