Flow-through electrochemically assisted reverse-osmosis: A new process towards low-chemical desalination.

Water Res

School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore. Electronic address:

Published: February 2024

Two-pass reverse osmosis (RO) process is prevailing in seawater desalination, but each process must consume considerable amounts of chemicals to secure product water quality. Caustic soda is used to raise the pH of the first-pass RO permeate (also the second-pass RO feed) to ensure adequate removal of boron in the subsequent second-pass RO, while antiscalants and disinfectants such as hypochlorite are added in the feed seawater for scaling and biofouling control of the first-pass RO membranes. Here, we report for the first time a flow-through electrochemically assisted reverse osmosis (FT-EARO) module system used in the first-pass RO, aiming to dramatically reduce or even eliminate chemical usage for the current RO desalination. This novel system integrated an electroconductive permeate carrier as cathode and an electroconductive feed spacer as anode on each side of the first-pass RO membrane. Upon applying an extremely low-energy (< 0.005 kWh/m) electrical field, the FT-EARO module could (1) produce a permeate with pH >10 with no alkali dosage, ensuring sufficient boron removal in the second-pass RO, and (2) generate protons and low-concentration free chlorine near the membrane surface, potentially discouraging membrane scaling and biofouling while maintaining satisfactory desalination performance. The current study further elucidated the high scalability of this novel electrified high-pressure RO module design. The low-chemical manner of FT-EARO presents an attractive practical option towards green and sustainable seawater desalination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120982DOI Listing

Publication Analysis

Top Keywords

flow-through electrochemically
8
electrochemically assisted
8
reverse osmosis
8
seawater desalination
8
scaling biofouling
8
ft-earo module
8
desalination
5
assisted reverse-osmosis
4
reverse-osmosis process
4
process low-chemical
4

Similar Publications

Flow electrolytic separation of radionuclides for interference suppression in γ-spectrometry.

Anal Chim Acta

February 2025

Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, CH-8093, Switzerland; Laboratory of Radiochemistry, Centre for Nuclear Engineering and Sciences, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland. Electronic address:

Background: The direct and accurate measurement of low-level γ-emitters in samples from nuclear facilities is a challenging task due to the presence of high activities of dominant radionuclides. In this case a complex chemical separation is required to remove interfering radionuclides prior to γ-spectrometric analysis. Several radionuclides such as, Ag, Sb, Sn and Te are of relevance for radioanalytical analysis in nuclear facilities.

View Article and Find Full Text PDF

Exploring critical pathways using robust strategies: Nanodiamond electrocatalysts for promoting boron removal via electrosorption.

Water Res

December 2024

Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea. Electronic address:

Article Synopsis
  • The study introduces a new electrosorption technology using nanodiamonds to effectively remove boron from wastewater, achieving an impressive boron adsorption capacity of 10.5 μmol/g.
  • It highlights the importance of different gas purging methods on the electrosorption process and characterizes the deterioration of electrodes through advanced spectroscopy techniques.
  • A machine learning model was developed to predict effluent properties and optimize the system, demonstrating the potential of ML in enhancing water treatment processes.
View Article and Find Full Text PDF

Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N) to ammonia (NH) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism.

View Article and Find Full Text PDF

3D-Printed Dual-Channel Flow-Through Miniaturized Devices with Dual In-Channel Electrochemical Detection.

Anal Chem

December 2024

Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, E-28802 Madrid, Spain.

Here, we present three-dimensional-printed dual-channel flow-through miniaturized devices (3D) with dual electrochemical detection (ED) integrating two working electrodes each in an in-channel configuration (3D-ED). Prussian Blue (PB) shell-gold nanoparticles ((PB)AuNP) core-based electrochemistry was chosen for selective hydrogen peroxide determination. 3D-ED devices exhibited impress stability, identical intrachannel and interchannel electrochemical performances, and excellent interdevice precision with values under 9%, revealing the reliability of the design and fabrication of the devices.

View Article and Find Full Text PDF

Towards the Use of Low-Concentration CO Sources by Direct Selective Electrocatalytic Reduction.

Angew Chem Int Ed Engl

December 2024

Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.

The direct CO reduction reaction (CORR) from simulated flue gas of various CO concentrations could minimize extra energy for pre-concentration processes to highly concentrated CO as a feedstock. We investigate the challenges for CORR caused by low CO concentrations and provide strategies concerning the impact of the chosen electrocatalyst material and the selection of the electrolyte to attain high CO selectivity. We continuously feed CO mixed with N (the typical dilutant in flue gas) in various ratios to gas diffusion electrodes in a model flow-through electrolyzer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!