Microplastics (MP) of all sizes and densities have been found deposited in streambeds. Several delivery processes were proposed to explain these observations. However, none of the previous studies explored these processes systematically, especially in cases of streambeds made of fine sediments that are regularly in motion. In this study, we quantified the effect of streambed motion on the deposition and accumulation of MP in streambed sediments using particle tracking simulations in a numerical flow and transport model. The model was run for streamwater velocities of 0.1-0.5 m s and median grain sizes of 0.15-0.6 mm. Streambed morphodynamics were estimated from these input parameters using empirical relationships. MP propensity to become trapped in porous media was simulated using a filtration coefficient. For each grain size and streamwater velocity, a wide variety of filtration coefficients was used in simulations in order to predict the fate of particles in the sediment. We found that exchange due to sediment turnover leads to burial and long-term deposition of MP that originally were not expected to enter the bed due to size exclusion. The results also show that in streambeds with fine sediments, localized deposits of MP are expected to occur as a horizontal layer below the moving fraction of the bed (upper layer). However, increasing celerity reduces the depth of MP deposition in the streambed. We conclude that models that do not include the effect of bed motion on MP deposition are likely miscalculating the deposition, retention, resuspensions and long-term accumulation of MP in streambed sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120952 | DOI Listing |
Sci Total Environ
December 2024
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom.
Excess fine sediment supply and its associated contaminants can have detrimental effects on water quality and river ecology with sediment deposition on, and subsequent infiltration in, streambeds impacting riverine habitats. Fallout radionuclides (FRNs) are used as tracers in aquatic systems, and the Be/Pb ratio is a useful indicator for sediment residence/storage time. Suspended and submerged mid-channel bar sediments were collected during five surveys within a 5 km reach of a typical temperate lowland agricultural river system.
View Article and Find Full Text PDFPeerJ
October 2024
Northern Region, United States Forest Service, Missoula, MT, United States.
Human activities can increase sediment delivery to streams, changing the composition, distribution, and abundance of stream aquatic life. Few U.S.
View Article and Find Full Text PDFWater Res
February 2024
Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel. Electronic address:
Microplastics (MP) of all sizes and densities have been found deposited in streambeds. Several delivery processes were proposed to explain these observations. However, none of the previous studies explored these processes systematically, especially in cases of streambeds made of fine sediments that are regularly in motion.
View Article and Find Full Text PDFWater Res
October 2023
Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes (CEAB- CSIC), Girona 17300, Spain.
The presence of bacteria and viruses in freshwater represents a global health risk. The substantial spatial and temporal variability of microbes leads to difficulties in quantifying the risks associated with their presence in freshwater. Fine particles, including bacteria and viruses are transported and accumulated into shallow streambed (i.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2023
School of Water Resources Engineering, Jadavpur University, Kolkata, West Bengal, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!