Characterizing structural and dynamic properties of proteins and large macromolecular assemblies is crucial to understand the molecular mechanisms underlying biological functions. In the field of structural biology, no single method comprehensively reveals the behavior of biological systems across various spatiotemporal scales. Instead, we have a versatile toolkit of techniques, each contributing a piece to the overall puzzle. Integrative structural biology combines different techniques to create accurate and precise multi-scale models that expand our understanding of complex biological systems. This review outlines recent advancements in computational and experimental methods in structural biology, with special focus on recent Artificial Intelligence techniques, emphasizes integrative approaches that combine different types of data for precise spatiotemporal modeling, and provides an outlook into future directions of this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.sbi.2023.102746 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!