Fourteen novel tumor-targeting copper(II) and zinc(II) complexes, [Cu(ONQ)(QD1)(NO)]·CHOH (NQ3), [Cu(ONQ)(QD2)(NO)] (NQ2), [Cu(NQ)(QD2)Cl] (NQ3), [Cu(ONQ)(QD1)Cl] (NQ4), [Cu(ONQ)(QD3)](NO) (NQ5), [Cu(ONQ)(QD3)Cl] (NQ6), [Zn(ONQ)(QD4)Cl] (NQ7), [Zn(ONQ)(QD1)Cl] (NQ8), [Zn(ONQ)(QD5)Cl] (NQ9), [Zn(ONQ)(QD2)Cl] (NQ10), [Zn(ONQ)(QD6)Cl] (NQ11), [Zn(ONQ)(QD7)Cl] (NQ12), and [Zn(ONQ)(QD3)Cl] (NQ13) supported on 8-hydroxyquinoline-N-oxide (H-ONQ), 2,2'-dipyridyl (QD1), 5,5'-dimethyl-2,2'-bipyridyl (QD2), 1,10-phenanthroline (QD3), 4,4'-dimethoxy-2,2'-bipyridyl (QD4), 4,4'-dimethyl-2,2'-bipyridyl (QD5), 5-chloro-1,10-phenanthroline (QD6), and bathophenanthroline (QD7), were first synthesized and characterized using various spectroscopic techniques. Furthermore, NQ1-NQ13 exhibited higher antiproliferative activity and selectivity for cisplatin-resistant SK-OV-3/DDP tumor cells (CiSK3) compared to normal HL-7702 cells based on results obtained from the cell counting Kit-8 (CCK-8) assay. The complexation of copper(II) ion with QD2 and ONQ ligands resulted in an evident increase in the antiproliferation of NQ1-NQ6, with NQ6 exhibiting the highest antitumor potency against CiSK3 cells compared to NQ1-NQ5, H-ONQ, QD1-QD7, and NQ7-NQ13 as well as the reference cisplatin drug with an IC value of 0.17 ± 0.05 μM. Mechanistic studies revealed that NQ4 and NQ6 induced apoptosis of CiSK3 cells via mitophagy pathway regulation and adenosine triphosphate (ATP) depletion. Further, the differential induction of mitophagy decreased in the order of NQ6 > NQ4, which can be attributed to the major impact of the QD3 ligand with a large planar geometry and the Cl leaving group within the NQ6 complex. In summary, these results confirmed that the newly synthesized H-ONQ copper(II) and zinc(II) coordination metal compounds NQ1-NQ13 exhibit potential as anticancer drugs for cisplatin-resistant ovarian CiSK3 cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2023.112443 | DOI Listing |
ACS Omega
December 2024
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India.
In a quest to explore interconvertible assemblies of hydrates of cobalt(II), copper(II), and zinc(II) 2,6-pyridinedicarboxylate (), complexes having cation of a chloro-substituted analogue N-{(10-chloroanthracen-9-yl)methyl}-3-(1H-imidazol-1-yl)propan-1-amine were investigated. In the case of cobalt and copper complexes, a crystallized stable hydrate and a less stable methanol hydrate were guided by concentration-dependent crystallizations. The unit-cells of the crystals of the methanol hydrates of the two cobalt and copper complexes each belong to the P1̅ space group but have different stoichiometries as well as large differences in packing.
View Article and Find Full Text PDFJ Inorg Biochem
November 2024
Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-779 00 Olomouc, Czech Republic. Electronic address:
The copper(II), cobalt(II), and zinc(II) complexes with 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl)-1H-benzimidazole (tbb) and 2-[2-[2-(1H-benzimidazol-2-yl)ethylsulfanyl]ethyl]-1H-benzimidazole (tebb), [Cu(tbb)Cl] (1), [Co(tbb)Cl] (2), [Zn(tbb)Cl] (3), [Cu(tebb)Cl(HO)]Cl (4), [Co(tebb)Cl]·nCHOH (5) and [Zn(tebb)Cl(HO)]Cl (6), have been prepared and evaluated for antiproliferative activity. The structure of (4) was proved by X-ray diffraction crystallography. The coordination compounds were tested for their cytotoxic activities in cancer cell lines in vitro.
View Article and Find Full Text PDFJ Inorg Biochem
February 2025
Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States. Electronic address:
Metal ion coordination is crucial in bacterial metabolism, while divalent metal ions serve as essential cofactors for various enzymes involved in cellular processes. Therefore, bacteria have developed sophisticated regulatory mechanisms to maintain metal homeostasis. These involve protein interactions for metal ion uptake, efflux, intracellular transport, and storage.
View Article and Find Full Text PDFACS Catal
November 2024
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
The air-stable copper(II) catalyst [Cu(FOX-L1)(MeCN)][OTf] () is prepared from a fused meso-dipyridylbisoxazolidine (FOX-L1) and CuBr, followed by treatment with AgOTf. The compound is a catalyst for the dehydration of 1-phenylethanol to styrene (+HO) in over 95% yield at 1 mol % catalyst loading. Other alcohols (benzylic, tertiary, or allylic) are also efficiently dehydrated by this catalyst.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
This study introduces a novel ion-imprinted polymer for the ultrasensitive detection of mercury(II) in water. The ion-imprinted polymer was synthesized via a simple bulk polymerization process using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, morpholine-4-carbodithioic acid phenyl ester as the chelating agent, and ammonium persulfate as the initiator. The electrochemical mercury(II) sensing capability of the ion-imprinted polymer was studied via the modification of a cost-effective carbon paste electrode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!