Differential superoxide production in phosphorylated neuronal nitric oxide synthase mu and alpha variants.

J Inorg Biochem

College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA. Electronic address:

Published: February 2024

Neuronal nitric oxide synthase (nNOS) is regulated by phosphorylation in vivo, yet the underlying biochemical mechanisms remain unclear, primarily due to difficulty in obtaining milligram quantities of phosphorylated nNOS protein; detailed spectroscopic and rapid kinetics investigations require purified protein samples at a concentration in the range of hundreds microM. Moreover, the functional diversity of the nNOS isoform is linked to its splice variants. Also of note is that determination of protein phosphorylation stoichiometry remains as a challenge. To address these issues, this study first expanded a recent genetic code expansion approach to produce phosphorylated rat nNOSμ and nNOSα holoproteins through site-specific incorporation of phosphoserine (pSer) at residues 1446 and 1412, respectively; this site is at the C-terminal tail region, a NOS-unique regulatory element. A quantitative mass spectrometric approach was then developed in-house to analyze unphosphorylated peptides in phosphatase-treated and -untreated phospho-nNOS proteins. The observed pSer-incorporation efficiency consistently exceeded 80%, showing high pSer-incorporation efficiency. Notably, EPR spin trapping results demonstrate that under l-arginine-depleted conditions, pSer1412 nNOSα presented a significant reduction in superoxide generation, whereas pSer1446 nNOSμ exhibited the opposite effect, compared to their unphosphorylated counterparts. This suggests that phosphorylation at the C-terminal tail has a regulatory effect on nNOS uncoupling that may differ between variant forms. Furthermore, the methodologies for incorporating pSer into large, complex protein and quantifying the percentage of phosphorylation in recombinant purified protein should be applicable to other protein systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843652PMC
http://dx.doi.org/10.1016/j.jinorgbio.2023.112454DOI Listing

Publication Analysis

Top Keywords

neuronal nitric
8
nitric oxide
8
oxide synthase
8
purified protein
8
c-terminal tail
8
pser-incorporation efficiency
8
protein
6
differential superoxide
4
superoxide production
4
production phosphorylated
4

Similar Publications

Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.

View Article and Find Full Text PDF

Effect of electroacupuncture on vascular remodeling in rats with cerebral ischemia by regulating irisin based on VEGF/Akt/eNOS signaling pathway.

Brain Res Bull

January 2025

School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China. Electronic address:

Article Synopsis
  • The study investigated how electroacupuncture (EA) affects irisin secretion and its role in recovering brain function and blood vessel health after a stroke in rats.
  • The research showed that EA increased irisin levels significantly after seven days and improved neurobehavioral function while reducing brain damage and enhancing blood flow and vascular growth.
  • These beneficial effects of EA were weakened when the gene responsible for irisin production was silenced, suggesting that irisin plays a critical role in EA’s therapeutic effects on brain recovery.
View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.

View Article and Find Full Text PDF

Zebrafish as a Visible Neuroinflammation Model for Evaluating the Anti-Inflammation Effect of Curcumin-Loaded Ferritin Nanoparticles.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.

It is crucial to inhibit the neuroinflammation response as it is a prominent factor contributing to the pathogenesis of neurodegenerative disorders. However, the limited development of neuroinflammation models dramatically hinders the efficiency of nanomedicine discovery. In recent years, the optically transparent zebrafish model provided unique advantages for imaging of the whole body, allowing the progression of the disease to be visualized.

View Article and Find Full Text PDF

Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!