Waterlogging (WL) is a major hindrance to the growth and development of leguminous crops, including mung bean. Here, we explored the effect of salicylic acid (SA) pretreatment on growth and yield output of two elite mung bean genotypes (BU Mung bean-4 and BU Mung bean-6) subjected to WL stress. SA pretreatment significantly improved shoot dry weight, individual leaf area, and photosynthetic pigment contents in both genotypes, while those improvements were higher in BU Mung bean-6 when compared with BU Mung bean-4. We also found that SA pretreatment significantly reduced the reactive oxygen species-induced oxidative burden in both BU Mung bean-6 and BU Mung bean-4 by enhancing peroxidase, glutathione S-transferase, catalase, and ascorbate peroxidase activities, as well as total flavonoid contents. SA pretreatment further improved the accumulation of proline and free amino acids in both genotypes, indicating that SA employed these osmoprotectants to enhance osmotic balance. These results were particularly corroborated with the elevated levels of leaf water status and leaf succulence in BU Mung bean-6. SA-mediated improvement in physiological and biochemical mechanisms led to a greater yield-associated feature in BU Mung bean-6 under WL conditions. Collectively, these findings shed light on the positive roles of SA in alleviating WL stress, contributing to yield improvement in mung bean crop.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2023.108230DOI Listing

Publication Analysis

Top Keywords

mung bean-6
20
mung bean
16
mung
12
mung bean-4
12
salicylic acid
8
bean genotypes
8
pretreatment improved
8
bean-6
5
role salicylic
4
acid improving
4

Similar Publications

Role of salicylic acid in improving the yield of two mung bean genotypes under waterlogging stress through the modulation of antioxidant defense and osmoprotectant levels.

Plant Physiol Biochem

January 2024

Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. Electronic address:

Waterlogging (WL) is a major hindrance to the growth and development of leguminous crops, including mung bean. Here, we explored the effect of salicylic acid (SA) pretreatment on growth and yield output of two elite mung bean genotypes (BU Mung bean-4 and BU Mung bean-6) subjected to WL stress. SA pretreatment significantly improved shoot dry weight, individual leaf area, and photosynthetic pigment contents in both genotypes, while those improvements were higher in BU Mung bean-6 when compared with BU Mung bean-4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!