Amino acids in carbonaceous chondrites may have seeded the origin of life on Earth and possibly elsewhere. Recently, the return samples from a C-type asteroid Ryugu were found to contain amino acids with a similar distribution to Ivuna-type CI chondrites, suggesting the potential of amino acid abundances as molecular descriptors of parent body geochemistry. However, the chemical mechanisms responsible for the amino acid distributions remain to be elucidated particularly at low temperatures (<50°C). Here, we report that two representative proteinogenic amino acids, aspartic acid and glutamic acid, decompose to β-alanine and γ-aminobutyric acid, respectively, under simulated geoelectrochemical conditions at 25°C. This low-temperature conversion provides a plausible explanation for the enrichment of these two n-ω-amino acids compared to their precursors in heavily aqueously altered CI chondrites and Ryugu's return samples. The results suggest that these heavily aqueously altered samples originated from the water-rich mantle of their water/rock differentiated parent planetesimals where protein α-amino acids were decomposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848742PMC
http://dx.doi.org/10.1126/sciadv.adh7845DOI Listing

Publication Analysis

Top Keywords

carbonaceous chondrites
8
asteroid ryugu
8
ryugu amino
8
amino acids
8
amino acid
8
aqueous breakdown
4
breakdown aspartate
4
aspartate glutamate
4
glutamate n-ω-amino
4
n-ω-amino acids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!