Selective image segmentation driven by region, edge and saliency functions.

PLoS One

Department of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea.

Published: December 2023

AI Article Synopsis

  • - Present active contour methods have difficulty with image segmentation due to inhomogeneities in texture, color, or intensity, leading to imprecise differentiation of image components and computational inefficiencies due to complex mathematical formulations.
  • - These methods can become trapped in local minimum energy configurations, affecting convergence and performance, especially in areas with weak or subtle boundaries.
  • - The proposed approach integrates region-based, edge-based, and saliency-based techniques, using a zero crossing feature detector and a saliency function to enhance the model's effectiveness, allowing for selective object segmentation in both homogeneous and inhomogeneous images.

Article Abstract

Present active contour methods often struggle with the segmentation of regions displaying variations in texture, color, or intensity a phenomenon referred to as inhomogeneities. These limitation impairs their ability to precisely distinguish and outline diverse components within an image. Further some of these methods employ intricate mathematical formulations for energy minimization. Such complexity introduces computational sluggishness, making these methods unsuitable for tasks requiring real-time processing or rapid segmentation. Moreover, these methods are susceptible to being trapped in energy configurations corresponding to local minimum points. Consequently, the segmentation process fails to converge to the desired outcome. Additionally, the efficacy of these methods diminishes when confronted with regions exhibiting weak or subtle boundaries. To address these limitations comprehensively, our proposed approach introduces a fresh paradigm for image segmentation through the synchronization of region-based, edge-based, and saliency-based segmentation techniques. Initially, we adapt an intensity edge term based on the zero crossing feature detector (ZCD), which is used to highlight significant edges of an image. Secondly, a saliency function is formulated to detect salient regions from an image. We have also included a globally tuned region based SPF (signed pressure force) term to move contour away and capture homogeneous regions. ZCD, saliency and global SPF are jointly incorporated with some scaled value for the level set evolution to develop an effective image segmentation model. In addition, proposed method is capable to perform selective object segmentation, which enables us to choose any single or multiple objects inside an image. Saliency function and ZCD detector are considered feature enhancement tools, which are used to get important features of an image, so this method has a solid capacity to segment nature images (homogeneous or inhomogeneous) precisely. Finally, the adaption of the Gaussian kernel removes the need of any penalization term for level set reinitialization. Experimental results will exhibit the efficiency of the proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723724PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294789PLOS

Publication Analysis

Top Keywords

image segmentation
12
segmentation
8
saliency function
8
level set
8
proposed method
8
image
7
methods
5
selective image
4
segmentation driven
4
driven region
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!