A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using AlphaFold and Experimental Structures for the Prediction of the Structure and Binding Affinities of GPCR Complexes via Induced Fit Docking and Free Energy Perturbation. | LitMetric

Free energy perturbation (FEP) remains an indispensable method for computationally assaying prospective compounds in advance of synthesis. However, before FEP can be deployed prospectively, it must demonstrate retrospective recapitulation of known experimental data where the subtle details of the atomic ligand-receptor model are consequential. An open question is whether AlphaFold models can serve as useful initial models for FEP in the regime where there exists a congeneric series of known chemical matter but where no experimental structures are available either of the target or of close homologues. As AlphaFold structures are provided without a bound ligand, we employ induced fit docking to refine the AlphaFold models in the presence of one or more congeneric ligands. In this work, we first validate the performance of our latest induced fit docking technology, IFD-MD, on a retrospective set of public experimental GPCR structures with 95% of cross-docks producing a pose with a ligand RMSD ≤ 2.5 Å in the top two predictions. We then apply IFD-MD and FEP on AlphaFold models of the somatostatin receptor family of GPCRs. We use AlphaFold models produced prior to the availability of any experimental structure from this family. We arrive at FEP-validated models for SSTR2, SSTR4, and SSTR5, with RMSE around 1 kcal/mol, and explore the challenges of model validation under scenarios of limited ligand data, ample ligand data, and categorical data.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c00839DOI Listing

Publication Analysis

Top Keywords

alphafold models
16
induced fit
12
fit docking
12
experimental structures
8
free energy
8
energy perturbation
8
ligand data
8
alphafold
6
models
6
alphafold experimental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!