Monolithic perovskite/silicon tandem solar cells have been attracted much attention in recent years. Despite their high performances, the stability issue of perovskite-based devices is recognized as one of the key challenges to realize industrial application. When comes to the perovskite top subcell, the interface between perovskite and electron transporting layers (usually C) significantly affects the device efficiency as well as the stability due to their poor adhesion. Here, different from the conventional interfacial passivation using metal fluorides, a hybrid intermediate layer is proposed-PMMA functionalized with ionic liquid (IL)-is introduced at the perovskite/C interface. The application of PMMA essentially improves the interfacial stability due to its strong hydrophobicity, while adding IL relieves the charge accumulation between PMMA and the perovskite. Thus, an optimal wide-bandgap perovskite solar cells achieves power conversion efficiency of 20.62%. These cells are further integrated as top subcells with silicon bottom cells in a monolithic tandem structure, presenting an optimized PCE up to 27.51%. More importantly, such monolithic perovskite/silicon cells exhibit superior stability by maintaining 90% of initial efficiency after 1200 h under continuous illumination.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202308553DOI Listing

Publication Analysis

Top Keywords

solar cells
12
ionic liquid
8
intermediate layer
8
perovskite/silicon tandem
8
tandem solar
8
cells monolithic
8
monolithic perovskite/silicon
8
cells
6
liquid modified
4
modified polymer
4

Similar Publications

Easy-Curing and pH-Regulated CRISPR-Cas9 Plasmids for Gene Editing and Plasmid Curing in Lactococcus cremoris.

Microb Biotechnol

December 2024

Departamento de Química Biológica Ranwel Caputto, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.

In this work, we developed a plasmid-based CRISPR-Cas9 strategy for editing Lactococcus cremoris, which allows easy generation of plasmid-free strains with the desired modification. We constructed versatile shuttle vectors based on the theta-type pAMβ1 promiscuous replicon and p15A ori, expressing both the Cas9 nuclease gene (under pH-regulated promoters derived from P170) and a single-guide RNA for specific targeting (under a strong constitutive promoter). The vectors designed for plasmid targeting were very effective for low- and high-copy-number plasmid curing in L.

View Article and Find Full Text PDF

Molybdenum telluride (MoTe) shows great promise as a solar absorber material for photovoltaic (PV) cells owing to its wide absorption range, adjustable bandgap, and lack of dangling bonds at the surface. In this research, a basic device structure comprising Pt/MoTe/ZnO/ITO/Al was developed, and its potential was assessed using the SCAPS-1D software. The preliminary device exhibited a photovoltaic efficiency of 23.

View Article and Find Full Text PDF

Interfacial Field-Effect Enabling High-Performance Perovskite Photovoltaics.

Small

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.

Currently, the power conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) is still limited by reduced open-circuit voltage (V), due to defect-induced charge recombination. Most studies focus on defect passivation and improving carrier transport through introducing passivating molecules or macroscopic physical fields. Herein, to mitigate energy level mismatch and recombination losses induced by interface defects, an interface electric-field passivation is introduced, employing the ordered arrangement of the dipole molecule benzenesulfonyl chloride (BC).

View Article and Find Full Text PDF

Boosting Photovoltaic Efficiency: The Role of Functional Group Distribution in Perovskite Film Passivation.

Small

December 2024

Science and Education Integration College of Energy and Carbon Neutralization, College of Materials Science and Engineering, Zhejiang Provincial Key Laboratory of Clean Energy Conversion and Utilization, Zhejiang University of Technology, Hangzhou, 310014, China.

The utilization of small organic molecules with appropriate functional groups and geometric configurations for surface passivation is essential for achieving efficient and stable perovskite solar cells (PSCs). In this study, two isomers, 4-sulfonamidobenzoic acid (4-SA) and 3-sulfamobenzoic acid (3-SA), both featuring sulfanilamide and carboxyl functional groups arranged in different positions, are evaluated for their effectiveness in passivating defects of the perovskite layer. The calculation and characterization results reveal that 3-SA, with its meta-substitution, offered superior passivation compared to the para-substituted 4-SA, leading to enhanced charge carrier dynamics and extraction efficiency.

View Article and Find Full Text PDF

Typical PEDOT:PSS hole-transporting layers frequently present some issues, including mismatched energy levels, high acidity, severe hygroscopicity, etc., all of which significantly weaken device performance. Herein, an approach of halogenated solvent treatment to modulate the physical properties of indium tin oxide (ITO) substrates is employed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!