Carbonyl-carbonyl interactions in peptides and proteins attracted considerable interest in recent years. Here, we report a survey of carbonyl-carbonyl interactions in cyclic peptides, depsipeptides, peptoids and discuss the relationship between backbone torsion angles and CO∙∙∙CO distances. In general, φ values in the range between -40° and -90° and between 40° and 90° correspond to CO∙∙∙CO distances below 3.22 Å. By extending the analysis of carbonyl-carbonyl interactions in different types of beta turns in proteins, we also highlight the role of direct or reciprocal carbonyl-carbonyl interactions in stabilizing the beta turn conformation for each specific type. We confirmed the new type II beta turn, detected by Dunbrack and coworkers, and named Pa, and detect the presence of a direct carbonyl-carbonyl interaction between the second and third residues of the turn. We also evidenced the existence of another new type II beta turn, named pA (following Dunbrack's notation), which represents the alternative conformation of Pa with opposite φ and ψ values and is characterized by a direct carbonyl-carbonyl interaction between the second and third residues of the turn. Finally, we show that the occurrence of CO∙∙∙CO interactions could be also advocated to explain from a chemical point of view the diversity of turn types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10806932PMC
http://dx.doi.org/10.1002/pro.4868DOI Listing

Publication Analysis

Top Keywords

carbonyl-carbonyl interactions
20
beta turn
12
beta turns
8
co∙∙∙co distances
8
type beta
8
direct carbonyl-carbonyl
8
carbonyl-carbonyl interaction
8
interaction second
8
second third
8
third residues
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!