Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
YAlO:Ce (YAG:Ce) phosphors are extensively used in the field of white light-emitting diodes (LEDs) due to their efficient luminescent properties. To optimize the performance of YAG:Ce phosphors, a comprehensive understanding of their synthesis and structural evolution is essential. This paper presents a direct in situ transmission electron microscopy (TEM) /scanning TEM (STEM) investigation on the transformation process of a precursor comprising nanocrystalline CeO dispersed in an amorphous Y-Al oxide matrix into crystalline YAG:Ce particles. The study reveals that nanocrystalline CeO particles dissolve completely in the Y-Al oxide matrix at a temperature above 900 °C, while YAlO (YAP)-type crystalline particles with AlO phase in grain boundaries are observed above 1000 °C. Finally, YAG:Ce-type crystalline particles are formed above 1180 °C. Atomic-resolution energy-dispersive X-ray spectroscopy (EDS) elemental mapping demonstrates that the doped cerium (Ce) atoms occupy the same atomic sites as yttrium (Y). Photoluminescence measurements validate the efficient luminescent properties of the obtained YAG:Ce phosphor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202308001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!