Evaluation of the effect of nanoparticles on the cultivation of edible plants by ICP-MS: a review.

Anal Bioanal Chem

Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, 05513-970, Brazil.

Published: May 2024

Nanoparticle (NP) applications aiming to boost plant biomass production and enhance the nutritional quality of crops hae proven to be a valuable ally in enhancing agricultural output. They contribute to greater food accessibility for a growing and vulnerable population. These nanoscale particles are commonly used in agriculture as fertilizers, pesticides, plant growth promoters, seed treatments, opportune plant disease detection, monitoring soil and water quality, identification and detection of toxic agrochemicals, and soil and water remediation. In addition to the countless NP applications in food and agriculture, it is possible to highlight many others, such as medicine and electronics. However, it is crucial to emphasize the imperative need for thorough NP characterization beyond these applications. Therefore, analytical methods are proposed to determine NPs' physicochemical properties, such as composition, crystal structure, size, shape, surface charge, morphology, and specific surface area, detaching the inductively coupled plasma mass spectrometry (ICP-MS) that allows the reliable elemental composition quantification mainly in metallic NPs. As a result, this review highlights studies involving NPs in agriculture and their consequential effects on plants, with a specific focus on analyses conducted through ICP-MS. Given the numerous applications of NPs in this field, it is essential to address their presence and increase in the environment and humans since biomagnification and biotransformation effects are studies that should be further developed. In light of this, the demand for rapid, innovative, and sensitive analytical methods for the characterization of NPs remains paramount.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-023-05076-wDOI Listing

Publication Analysis

Top Keywords

soil water
8
analytical methods
8
evaluation nanoparticles
4
nanoparticles cultivation
4
cultivation edible
4
edible plants
4
plants icp-ms
4
icp-ms review
4
review nanoparticle
4
applications
4

Similar Publications

A comparative pot study was performed to assess the toxic effects of copper (Cu) and/or zinc (Zn) contaminated wastewater (WW) irrigation on the growth, physiology, and element concentration of wheat grown for two months. The treatments included irrigation with uncontaminated wastewater (WW) as control, Cu-contaminated WW (CuWW), Zn-contaminated WW (ZnWW), and Cu + Zn contaminated WW (CuZnWW) in a completely randomized design. Compared to ZnWW, irrigation with CuWW or CuZnWW had severe effects on growth, physiology, and mineral absorption by wheat.

View Article and Find Full Text PDF

Maintaining good water quality is essential for drinking and agriculture. High water quality is crucial for irrigation to boost agricultural productivity and ensure sustainable water resource management. This study used in-depth physical and chemical analysis of water samples to evaluate the Kakia-Esamburmbur watershed's irrigation water sustainability.

View Article and Find Full Text PDF

Introduction: Enteric pathogens are a leading causes of diarrheal deaths in low-and middle-income countries. The Exposure Assessment of Infections in Rural Ethiopia (EXCAM) project, aims to identify potential sources of bacteria in the genus and, more generally, fecal contamination of infants during the first 1.5 years of life using as indicator.

View Article and Find Full Text PDF

Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).

View Article and Find Full Text PDF

Urbanized lands degrade surrounding grasslands by deteriorating the interactions between plants and soil microbiome.

Front Microbiol

January 2025

Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China.

To mitigate overgrazing on grasslands, towns were constructed in some pastoral regions of China to relocate pastoralists. Nevertheless, whether and how the urbanized lands impact the surrounding grassland ecosystem remains unclear. We assessed the impacts of urbanized lands on the plant and soil interactions within the surrounding grasslands in order to ensure an eco-sustainable pastoralist relocation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!