Crosstalk of nervous and immune systems in pancreatic cancer.

Front Cell Dev Biol

The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China.

Published: November 2023

Pancreatic cancer is a highly malignant tumor known for its extremely low survival rate. The combination of genetic disorders within pancreatic cells and the tumor microenvironment contributes to the emergence and progression of this devastating disease. Extensive research has shed light on the nature of the microenvironmental cells surrounding the pancreatic cancer, including peripheral nerves and immune cells. Peripheral nerves release neuropeptides that directly target pancreatic cancer cells in a paracrine manner, while immune cells play a crucial role in eliminating cancer cells that have not evaded the immune response. Recent studies have revealed the intricate interplay between the nervous and immune systems in homeostatic condition as well as in cancer development. In this review, we aim to summarize the function of nerves in pancreatic cancer, emphasizing the significance to investigate the neural-immune crosstalk during the advancement of this malignant cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720593PMC
http://dx.doi.org/10.3389/fcell.2023.1309738DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
20
nervous immune
8
immune systems
8
cancer
8
peripheral nerves
8
immune cells
8
cancer cells
8
pancreatic
6
cells
6
immune
5

Similar Publications

The tumor microenvironment (TME) is involved in cancer initiation and progression. With advances in the TME field, numerous therapeutic approaches, such as antiangiogenic treatment and immune checkpoint inhibitors, have been inspired and developed. Nevertheless, the sophisticated regulatory effects on the biological balance of the TME remain unclear.

View Article and Find Full Text PDF

Optical molecular imaging technology and its application in precise surgical navigation of liver cancer.

Theranostics

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China.

Recent innovations in medical imaging technology have placed molecular imaging techniques at the forefront of diagnostic advancements. The current research trajectory in this field aims to integrate personalized molecular data of patients and diseases with traditional anatomical imaging data, enabling more precise, non-invasive, or minimally invasive diagnostic options for clinical medicine. This article provides an in-depth exploration of the basic principles and system components of optical molecular imaging technology.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).

Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.

View Article and Find Full Text PDF

Background: JCOG1113 is a randomized phase III trial that showed non-inferiority of gemcitabine plus S-1 to gemcitabine plus cisplatin in patients with advanced biliary tract cancer. Assessment of inter-institutional heterogeneity in chemotherapy contributes to confirm generalizability and reliability of the study itself. However, there have been no studies conducted to assess the heterogeneity among participating centers in randomized phase III trials for biliary tract cancer.

View Article and Find Full Text PDF

Inhibin, β, which is also known as INHBA, encodes a protein that belongs to the Transforming Growth factor-β (TGF-β) superfamily, which plays a pivotal role in cancer. Gastrointestinal tract (GI tract) cancer refers to the cancers that develop in the colon, liver, esophagus, stomach, rectum, pancreas, and bile ducts of the digestive system. The role of INHBA in all GI tract cancers remains understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!