All European Union (EU) Member States (MSs) are required to implement surveillance for avian influenza (AI) in poultry and wild birds and (i) to notify the outbreaks, when relevant and (ii) to report the results to the responsible authority. In addition, Iceland, Norway, Switzerland and the United Kingdom (Northern Ireland) also implement ongoing surveillance programmes to monitor occurrences of avian influenza viruses (AIVs) in poultry and wild birds. EFSA received a mandate from the European Commission to collate, validate, analyse and summarise the data resulting from these AI surveillance programmes in an annual report. The present report summarises the results of the surveillance activities carried out in MSs, Iceland, Norway, Switzerland and the United Kingdom (Northern Ireland) in 2022. Overall, the 31 reporting countries (RCs) sampled 22,171 during the 2022 surveillance activity: 18,490 PEs were sampled for serological testing and 3775 were sampled for virological testing. Some PEs were therefore sampled for both type of analytical methods. Out of the 18,490 PEs sampled for serological testing, 15 (0.08%) were seropositive for influenza A(H5) viruses. Out of the 3775 PEs sampled for virological testing, 74 PEs (1.96%) were positive to the virological assay for influenza A(H5) viruses. Seropositive PEs were found in four RCs (Belgium, Poland, Spain and Sweden) and as in previous years, the highest percentages of seropositive PEs were found in PEs raising breeding geese and waterfowl game birds. Out of these 15 seropositive PEs, 3 also tested positive by polymerase chain reaction (PCR) for influenza A (H5) viruses - 2 for highly pathogenic avian influenza virus (HPAIV) and 1 low pathogenic avian influenza (LPAI) (H5N3). In relation to the virological surveys, 10 RCs (32%) out of the 31 reported the detection of A (H5) viruses in 74 PEs, covering 12 different poultry categories. More specifically, 54 reported HPAIV A(H5N1), 17 HPAIV (H5N8), 2 AIV (H5N1) with unknown virus pathogenicity and 1 low pathogenic avian influenza (LPAI) (H5N3). Additionally, six PEs tested positive for undefined AIVs in three RCs. A total of 32,143 were sampled, with 4163 (12.95%) wild birds testing positive for HPAIVs by PCR, from 25 RCs. In contrast to previous years, out of the 4163 wild birds testing positive for HPAIv, subtype A(H5N1) virus was the main influenza A virus subtype identified among the wild bird testing positive for HPAIVs (3942; 95%). In addition, RCs also reported 984 wild birds testing positive for low pathogenic avian influenza (LPAI). Out of those, for 660 (67%) it was ascertained that the subtype was non-A(H5/H7); 260 (26%) wild birds tested positive for LPAIv of A(H5 or H7) subtypes and the remaining 64 (7%) LPAI viruses were belonging to other H-subtypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719745PMC
http://dx.doi.org/10.2903/j.efsa.2023.8480DOI Listing

Publication Analysis

Top Keywords

avian influenza
28
wild birds
28
pes sampled
16
pathogenic avian
16
testing positive
16
poultry wild
12
seropositive pes
12
tested positive
12
low pathogenic
12
influenza lpai
12

Similar Publications

Reaction-advection-diffusion model of highly pathogenic avian influenza with behavior of migratory wild birds.

J Math Biol

January 2025

School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, Jilin, People's Republic of China.

Wild birds are one of the main natural reservoirs for avian influenza viruses, and their migratory behavior significantly influences the transmission of avian influenza. To better describe the migratory behavior of wild birds, a system of reaction-advection-diffusion equations is developed to characterize the interactions among wild birds, poultry, and humans. By the next-generation operator, the basic reproduction number of the model is formulated.

View Article and Find Full Text PDF

Probing the functional constraints of influenza A virus NEP by deep mutational scanning.

Cell Rep

January 2025

Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

The influenza A virus nuclear export protein (NEP) is a multifunctional protein that is essential for the viral life cycle and has very high sequence conservation. However, since the open reading frame of NEP largely overlaps with that of another influenza viral protein, non-structural protein 1, it is difficult to infer the functional constraints of NEP based on sequence conservation analysis. In addition, the N-terminal of NEP is structurally disordered, which further complicates the understanding of its function.

View Article and Find Full Text PDF

Ecological Drivers of Evolution of Swine Influenza in the United States: A Review.

Emerg Microbes Infect

January 2025

Center for Influenza and Emerging Diseases, University of Missouri, Columbia, MO 652011, USA.

Influenza A viruses (IAVs) pose a major public health threat due to their wide host range and pandemic potential. Pigs have been proposed as "mixing vessels" for avian, swine, and human IAVs, significantly contributing to influenza ecology. In the United States, IAVs are enzootic in commercial swine farming operations, with numerous genetic and antigenic IAV variants having emerged in the past two decades.

View Article and Find Full Text PDF

Isoleucine at position 137 of Hemagglutinin acts as a Mammalian adaptation marker of H9N2 Avian influenza virus.

Emerg Microbes Infect

January 2025

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China.

The H9N2 subtype of avian influenza virus (AIV) is widely distributed among poultry and wild birds and is also a threat to humans. During AIV active surveillance in Liaoning province from 2015 to 2016, we identified ten H9N2 strains exhibiting different lethality to chick embryos. Two representative strains, A/chicken/China/LN07/2016 (CKLN/07) and A/chicken/China/LN17/2016 (CKLN/17), with similar genomic background but different chick embryo lethality, were chosen to evaluate the molecular basis for this difference.

View Article and Find Full Text PDF

Selected microwave irradiation effectively inactivates airborne avian influenza A(H5N1) virus.

Sci Rep

January 2025

The Edgar L. and Harold H. Buttner Chair of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.

The highly pathogenic avian influenza A(H5N1) virus threatens animal and human health globally. Innovative strategies are crucial for mitigating risks associated with airborne transmission and preventing outbreaks. In this study, we sought to investigate the efficacy of microwave inactivation against aerosolized A(H5N1) virus by identifying the optimal frequency band for a 10-min exposure and evaluating the impact of varying exposure times on virus inactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!