The regrowth and subsequent exposure of opportunistic pathogens (OPs) whilst reopening buildings that have been locked down due to the stay-at-home restrictions to limit the spread of COVID-19, is a public health concern. To better understand such microbiological risks due to lowered occupancy and water demand in buildings, first and post-flush water samples (n = 48) were sampled from 24 drinking water outlets from eight university buildings in two campuses (urban and rural), with various end-user occupancies. Both campuses were served with chlorinated water originating from a single drinking water distribution system in South-East Queensland, situated 14 km apart, where the rural campus had lower chlorine residuals. Culture-dependent and culture-independent methods (such as flow cytometry, qPCR and 16S rRNA gene amplicon sequencing) were used concurrently to comprehensively characterise the OPs of interest ( spp., , and nontuberculous mycobacteria (NTM)) and the premise plumbing microbiome. Results showed that buildings with extended levels of stagnation had higher and diverse levels of microbial growth, as observed in taxonomic structure and composition of the microbial communities. NTM were ubiquitous in all the outlets sampled, regardless of campus or end-user occupancy of the buildings. qPCR and culture demonstrated prevalent and higher concentrations of NTM in buildings (averaging 3.25 log[estimated genomic copies/mL]) with extended stagnation in the urban campus. Furthermore, flushing the outlets for 30 minutes restored residual and total chlorine, and subsequently decreased the levels of by a reduction of 1 log. However, this approach was insufficient to restore total and residual chlorine levels for the outlets in the rural campus, where both and NTM levels detected by qPCR remained unchanged, regardless of building occupancy. Our findings highlight that regular monitoring of operational parameters such as residual chlorine levels, and the implementation of water risk management plans are important for non-healthcare public buildings, as the levels of OPs in these environments are typically not assessed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719583PMC
http://dx.doi.org/10.1016/j.wroa.2023.100201DOI Listing

Publication Analysis

Top Keywords

buildings
8
opportunistic pathogens
8
drinking water
8
rural campus
8
residual chlorine
8
chlorine levels
8
levels
7
water
6
extended water
4
water stagnation
4

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Toward structured abdominal examination training using augmented reality.

Int J Comput Assist Radiol Surg

January 2025

Faculty of Computer Science and Research Campus STIMULATE, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.

Purpose: Structured abdominal examination is an essential part of the medical curriculum and surgical training, requiring a blend of theory and practice from trainees. Current training methods, however, often do not provide adequate engagement, fail to address individual learning needs or do not cover rare diseases.

Methods: In this work, an application for structured Abdominal Examination Training using Augmented Reality (AETAR) is presented.

View Article and Find Full Text PDF

Uneven of filling aggregate gradation may cause transportation problems such as pipe blockage due to segregation and stratification of filling slurry. To study the influence of aggregate gradation on the conveying performance of filler slurry, aggregate gradation experiments were carried out, rheological tests on slurries with coal gangue/aeolian sand ratios (6:4, 5:5 and 4:6) showed that appropriately increasing the proportion of aeolian sand can improve particle gradation. Computational fluid dynamics (CFD) scheme was used to simulate the pipeline transportation characteristics of the slurry under the conditions of three sets each of coal gangue/aeolian sand ratios, slurry concentrations (72%,74% and 76%), and inlet velocities (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!