The emergence of DNA-encoded library (DEL) technology has provided a considerable advantage to the pharmaceutical industry in the pursuit of discovering novel therapeutic candidates for their drug development initiatives. This combinatorial technique not only offers a more economical, spatially efficient, and time-saving alternative to the existing ligand discovery methods, but also enables the exploration of additional chemical space by utilizing novel DNA-compatible synthetic transformations to leverage multifunctional building blocks from readily available substructures. In this report, a decarboxylative-based hydroalkylation of DNA-conjugated -vinyl heterocycles enabled by single-electron transfer (SET) and subsequent hydrogen atom transfer through electron-donor/electron-acceptor (EDA) complex activation is detailed. The simplicity and robustness of this method permits inclusion of a broad array of alkyl radical precursors and DNA-tethered nitrogenous heterocyles to generate medicinally relevant substituted heterocycles with pendant functional groups. Moreover, a successful telescoped route provides the opportunity to access a broad range of intricate structural scaffolds by employing basic carboxylic acid feedstocks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717525PMC
http://dx.doi.org/10.1039/d3sc03731bDOI Listing

Publication Analysis

Top Keywords

-vinyl heterocycles
8
on-dna hydroalkylation
4
hydroalkylation -vinyl
4
heterocycles photoinduced
4
photoinduced eda-complex
4
eda-complex activation
4
activation emergence
4
emergence dna-encoded
4
dna-encoded library
4
library del
4

Similar Publications

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).

View Article and Find Full Text PDF

A novel and highly efficient Pd-catalyzed approach for the synthesis of bis-heterocycles featuring both isoxazoline and methyleneindole motifs is demonstrated. The in situ formation of vinyl Pd(II) species through an alkyne-tethered carbamoyl chloride cyclization is crucial, and the innovative Pd-catalyzed carboetherification of β,γ-unsaturated oximes with vinyl Pd(II) species has been developed. This method is not only operationally straightforward but also exhibits a broad substrate scope and excellent functional group tolerance.

View Article and Find Full Text PDF

Intestinal bacterial infections have become a significant threat to human health. However, the current typical antibiotic-based therapies not only contribute to drug resistance but also disrupt gut microbiota balance, resulting in additional adverse effects on life activities. There is an urgent need to develop new antibacterial materials that selectively eliminate pathogenic bacteria without disrupting beneficial bacterial communities or promoting drug resistance.

View Article and Find Full Text PDF

A highly efficient method has been developed for synthesizing 4-dienyl dihydropyridines through the nucleophilic dearomatization of activated pyridines using vinyl sulfoxonium ylides. This reaction follows the sequence involving ylide addition to activated pyridine, [2,3]-sigmatropic rearrangement, and subsequent sulfenic acid elimination. The resulting 4-dienyl dihydropyridines are then used in the synthesis of highly substituted -heterocyles.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses a new method for activating distal C-H bonds to create benzofulvenes, which are compounds formed through a [3 + 2] reaction involving palladium catalysis, overcoming traditional bond activation challenges.
  • This innovative approach involves concurrent activation of both β-C(benzylic)-H and δ-C(aryl)-H bonds and leads to the formation of novel chemical entities with promising anticancer properties.
  • In studies, these new compounds were found to effectively target oral squamous cell carcinoma (OSCC) by arresting the cell cycle at the S-phase and activating various apoptosis pathways, indicating their potential as effective chemotherapy options.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!