This review addresses the largely overlooked yet critical issue of "dead" metal in heterogeneous metal catalysts. "Dead" metal refers to the fraction of metal in a catalyst that remains inaccessible to reactants, significantly reducing the overall catalyst performance. As a representative example considered in detail here, this challenge is particularly relevant for carbon-supported metal catalysts, extensively employed in research and industrial settings. We explore key factors contributing to the formation of "dead" metal, including the morphology of the support, metal atom intercalation within the support layers, encapsulation of metal nanoparticles, interference by organic molecules during catalyst preparation, and dynamic behavior under microwave irradiation. Notably, the review outlines a series of strategic approaches to mitigate the occurrence of "dead" metal during catalyst preparation, thus boosting the catalyst efficiency. The knowledge gathered is important for enhancing the preparation of catalysts, especially those containing precious metals. Beyond the practical implications for catalyst design, this study introduces a novel perspective for understanding and optimizing the catalyst performance. The insights are expected to broadly impact different scientific disciplines, empowered with heterogeneous catalysis and driving innovation in energy, environmental science, and materials chemistry, among others. Exploring the "dead" metal phenomenon and potential mitigation strategies brings the field closer to the ultimate goal of high-efficiency, low-cost catalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717466 | PMC |
http://dx.doi.org/10.1039/d3sc04691e | DOI Listing |
Data Brief
February 2025
Department of Limnology and Fishery, Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland.
The dataset presented in this data paper supports "The prenatal assimilation of minerals and metals in the nestlings of a small passerine bird" (Orłowski et al. 2024) [1]. The article includes raw data on dead nestlings of a small passerine bird, the Eurasian Reed Warbler breeding in an extensive reedbed (with dominating plant species, the Common Reed located in an intensively fertilized fishpond habitat, the Stawy Milickie [Milicz Ponds] Nature Reserve (SW Poland).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
The factors controlling the catalytic activity in photochemical hydrogen evolution reaction (HER) are studied in detail for two macrocyclic cobalt compounds bearing two N-heterocyclic carbenes and two pyridyl donors ( and , where has a methoxy substituent on each pyridyl ligand). The present study adopts an aqueous photosystem consisting of EDTA, [Ru(bpy)] (bpy = 2,2'-bipyridine), and MV (MV = methylviologen) at pH = 5. Both catalysts are shown to promote HER in a similar efficiency (TON = 12-13 in 6 h), revealing a minor contribution of the electron-donating methoxy substituents.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:
Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.
View Article and Find Full Text PDFInt J Implant Dent
January 2025
School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
Purpose: SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
High degree of fluorination for ether electrolytes has resulted in improved cycling stability of lithium metal batteries due to stable solid electrolyte interphase (SEI) formation and good oxidative stability. However, the sluggish ion transport and environmental concerns of high fluorination degree drive the need to develop less fluorinated structures. Here, we depart from the traditional ether backbone and introduce bis(2-fluoroethoxy)methane (F2DEM), featuring monofluorination of the acetal backbone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!