Background: Sepsis is a systemic inflammatory disease, and Brevilin A (BA) has a powerful anti-inflammatory effect. However, whether BA has a similar effect on septic cardiomyopathy remains unclear. This study aimed to investigate the effect and mechanism of BA in septic cardiomyopathy.
Methods: First, a model of septic cardiomyopathy was constructed in vitro and in vivo. The expression of the cardiac injury markers, NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammation factors and its upstream modulator NF-κB was detected by real-time polymerase chain reaction and western blotting. Cardiac function was measured using echocardiography, cell viability was detected using the methyl thiazolyl tetrazolium assay. To further investigate the effects of BA on septic cardiomyopathy, different concentrations of BA were used. The experiment was divided into control group, LPS induced- group, LPS+2.5, 5.0, 10.0 μM BA treatment group of the vitro model, and the Sham, CLP, CLP+10, 20, 30 mg/kg BA treatment groups of the rat vivo model. Lastly, cardiac injury, NLRP3 inflammation, and cardiac function were assessed in each group.
Results: The mRNA and protein expression of cardiac inflammation and injury genes were significantly increased in the in vitro and in vivo sepsis cardiomyopathy models. When different concentrations of BA were used in sepsis cardiomyopathy in vivo and in vitro, the above-mentioned myocardial inflammation and injury factors were suppressed to varying degrees, cell viability increased, cardiac function improved, and the survival rate of rats also increased.
Conclusion: BA ameliorated sepsis cardiomyopathy by inhibiting NF-κB/NLRP3 inflammation activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10718335 | PMC |
http://dx.doi.org/10.1097/MS9.0000000000001403 | DOI Listing |
J Ethnopharmacol
December 2024
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt. Electronic address:
Ethnopharmacological Relevance: Mangifera indica (family Anacardiaceae), often acknowledged as mango and renowned for being a plant of diverse ethnopharmacological background since ancient times, harbors the polyphenolic bioactive constituent, mangiferin (MNG). MNG is a major phytochemical of Mangifera indica and other plants with a wide range of reported pharmacological activities, including antioxidant, anti-inflammatory, neuroprotective and hepatoprotective effects. MNG has also been utilized in traditional medicine; it is reportedly a major bioactive element in over 40 polyherbal products in traditional Chinese medicine (TCM), and two prominent anti-inflammatory, immunomodulatory and antiviral Cuban formulations.
View Article and Find Full Text PDFClin Immunol
December 2024
Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France. Electronic address:
Occupational exposure to crystalline silica is etiologically linked to an increased incidence of systemic sclerosis (SSc), also called Erasmus syndrome. The underlying mechanisms of silica-related SSc are still poorly understood. We demonstrated that early and repeated silica exposure contribute to the severity of SSc symptoms in the hypochloric acid (HOCl)-induced SSc mouse model.
View Article and Find Full Text PDFImmunol Lett
December 2024
Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China. Electronic address:
Background: The spleen, as the body's largest peripheral immune organ and a crucial source of circulating monocytes, plays a significant role in the acute inflammatory response of spleen-derived macrophages to diseases. Therefore, studying the impact and mechanism of X-ray irradiation on spleen-derived macrophages' inflammatory responses is of great importance.
Method: Extracted and identified mice splenic macrophages were divided into four groups: control group, LPS and ATP co-stimulated non-irradiated group, LPS and ATP co-stimulated group irradiated after 6h, and LPS and ATP co-stimulated group irradiated after 12h.
Mol Cell Probes
December 2024
Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China. Electronic address:
Long non-coding RNA TMC3-AS1 is identified to be upregulated by lipopolysaccharide (LPS) in inflammatory disease, but its role in acute kidney injury (AKI) is almost unknown. The study investigated the involvement of TMC3-AS1 in LPS-induced AKI and its downstream molecular regulatory mechanism. Our data suggested that knocking down TMC3-AS1 significantly reduced renal dysfunction, tissue inflammation and tissue damage in LPS-induced mice, and promoted cell viability, inhibited inflammation, apoptosis and necrosis in LPS-stimulated human renal tubular epithelial cells HK2.
View Article and Find Full Text PDFBiomaterials
December 2024
Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:
Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!