Objectives: The elderly are disproportionately affected by age-related hearing loss (ARHL). Despite being a well-known tool for ARHL evaluation, the Hearing Handicap Inventory for the Elderly Screening version (HHIE-S) has only traditionally been used for direct screening using self-reported outcomes. This work uses a novel integration of machine learning approaches to improve the predicted accuracy of the HHIE-S tool for ARHL in older adults.

Methods: We employed a dataset that was gathered between 2016 and 2018 and included 1,526 senior citizens from several Taipei City Hospital branches. 80% of the data were used for training (n = 1220) and 20% were used for testing (n = 356). XGBoost, Gradient Boosting, and LightGBM were among the machine learning models that were only used and assessed on the training set. In order to prevent data leakage and overfitting, the Light Gradient Boosting Machine (LGBM) model-which had the greatest AUC of 0.83 (95% CI 0.81-0.85)-was then only used on the holdout testing data.

Results: On the testing set, the LGBM model showed a strong AUC of 0.82 (95% CI 0.79-0.86), far outperforming conventional techniques. Notably, several HHIE-S items and age were found to be significant characteristics. In contrast to traditional HHIE research, which concentrates on the psychological effects of hearing loss, this study combines cutting-edge machine learning techniques-specifically, the LGBM classifier-with the HHIE-S tool. The incorporation of SHAP values enhances the interpretability of the model's predictions and provides a more comprehensive comprehension of the significance of various aspects.

Conclusions: Our methodology highlights the great potential that arises from combining machine learning with validated hearing evaluation instruments such as the HHIE-S. Healthcare practitioners can anticipate ARHL more accurately thanks to this integration, which makes it easier to intervene quickly and precisely.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722728PMC
http://dx.doi.org/10.1186/s13040-023-00351-zDOI Listing

Publication Analysis

Top Keywords

machine learning
20
age-related hearing
8
hearing loss
8
tool arhl
8
hhie-s tool
8
gradient boosting
8
machine
6
hhie-s
6
hearing
5
learning
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!