A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An efficient instance segmentation approach for studying fission gas bubbles in irradiated metallic nuclear fuel. | LitMetric

Gaseous fission products from nuclear fission reactions tend to form fission gas bubbles of various shapes and sizes inside nuclear fuel. The behavior of fission gas bubbles dictates nuclear fuel performances, such as fission gas release, grain growth, swelling, and fuel cladding mechanical interaction. Although mechanical understanding of the overall evolution behavior of fission gas bubbles is well known, lacking the quantitative data and high-level correlation between burnup/temperature and microstructure evolution blocks the development of predictive models and reduces the possibility of accelerating the qualification for new fuel forms. Historical characterization of fission gas bubbles in irradiated nuclear fuel relied on a simple threshold method working on low-resolution optical microscopy images. Advanced characterization of fission gas bubbles using scanning electron microscopic images reveals unprecedented details and extensive morphological data, which strains the effectiveness of conventional methods. This paper proposes a hybrid framework, based on digital image processing and deep learning models, to efficiently detect and classify fission gas bubbles from scanning electron microscopic images. The developed bubble annotation tool used a multitask deep learning network that integrates U-Net and ResNet to accomplish instance-level bubble segmentation. With limited annotated data, the model achieves a recall ratio of more than 90%, a leap forward compared to the threshold method. The model has the capability to identify fission gas bubbles with and without lanthanides to better understand the movement of lanthanide fission products and fuel cladding chemical interaction. Lastly, the deep learning model is versatile and applicable to the micro-structure segmentation of similar materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721801PMC
http://dx.doi.org/10.1038/s41598-023-47914-yDOI Listing

Publication Analysis

Top Keywords

fission gas
36
gas bubbles
32
nuclear fuel
16
fission
12
deep learning
12
gas
9
bubbles
8
bubbles irradiated
8
fission products
8
behavior fission
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!