Pectin and chitosan are natural polysaccharides obtained from fruit peels and exoskeletons of crustaceans and insects. They are safe for usage in food products and are renewable and biocompatible. They have further applications as wound dressings, body fat reduction, tissue engineering, and auxiliary agents in drug delivery systems. The healing process is usually long and painful. Adding a new material such as a pectin-chitosan composite to the implant surface or body would create unique biological responses to accelerate healing and delivery of target-specific medication at the implant site. The present study utilized the electrospraying process to create pectin-chitosan polyelectrolyte composite (PCPC) coatings with various ratios of 1:1, 2:1, 1:2, 1:3, and 3:1 on commercially pure titanium substrates. By means of FESEM, AFM, wettability, cross-cut adhesion, and microhardness were assessed the PCPC coatings' physical and mechanical properties. Subsequently, the antibacterial properties of the coating composite were assessed. AFM analysis revealed higher surface roughness for group 5 and homogenous coating for group 1. Group 3 showed the lowest water contact angle of 66.7° and all PCPC coatings had significantly higher Vickers hardness values compared to the control uncoated CpTi samples. Groups 3 and 4 showed the best adhesion of the PCPC to the titanium substrates. Groups 3, 4, and 5 showed antibacterial properties with a high zone of inhibitions compared to the control. The PCPC coating's characteristics can be significantly impacted by using certain pectin-chitosan ratios. Groups 3 (1:2) and 4 (1:3) showed remarkable morphological and mechanical properties with better surface roughness, greater surface strength, improved hydrophilicity, improved adhesion to the substrate surface, and additionally demonstrated significant antibacterial properties. According to the accomplished in vitro study outcomes, these particular PCPC ratios can be considered as an efficient coating for titanium dental implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721624 | PMC |
http://dx.doi.org/10.1038/s41598-023-48863-2 | DOI Listing |
Medicine (Baltimore)
January 2025
Anorectal Department, People's Hospital of Leshan, Leshan, Sichuan, China.
Background: This study evaluates the efficacy of a novel bismuth subgallate-borneol compound ointment as an adjuvant therapy in promoting postoperative healing of infectious incisions after anorectal surgery.
Methods: From June 2023 to October 2023, 46 patients with perianal abscess and anal fistula treated at our institution's Anorectal Surgery Department were enrolled in this prospective randomized controlled study. Patients were randomly allocated into 2 groups: the experimental group (n = 23) received conventional wound care plus a proprietary ointment containing 4.
ACS Appl Mater Interfaces
January 2025
Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China.
Interventional catheters have been widely applied in diagnostics, therapeutics, and other biomedical areas. The complications caused by catheter-related bacterial infection, venous thrombosis, and vascular abrasion have become the main reasons for the failure of interventional therapy. In this study, polyacrylamide/poly(acrylic acid) lubricating copolymer brushes were constructed on the surface of catheters and efficiently resisted the adhesion of blood components and bacteria through hydration and electrostatic repulsion effects.
View Article and Find Full Text PDFOrthod Craniofac Res
January 2025
Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran.
Objectives: This study aimed to evaluate and compare the antibacterial properties and optical characteristics of clear orthodontic aligners coated with zinc oxide (ZnO) and magnesium oxide (MgO) nanoparticles.
Materials And Methods: In this experimental laboratory study, polyethylene terephthalate glycol (PETG) aligner samples were coated with nanoparticles of ZnO, MgO and a combination of both (ZnO + MgO). The surface coatings were analysed before and after stability testing using field emission scanning electron microscopy (FESEM).
Cell Biochem Funct
January 2025
Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India.
The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).
View Article and Find Full Text PDFChem Biodivers
January 2025
Universidad Nacional de Tucuman Facultad de Bioquimica Quimica y Farmacia, Chemistry, Av. Kirchner 1900, 4000, San Miguel de Tucumán, ARGENTINA.
(Z)-3-butylamino-4,4,4-trifluoro-1-(2-hydroxyphenyl)but-2-en-1-one (1), a new β-aminoenone, has been investigated in terms of its intra- and intermolecular interactions. Vibrational, electronic and NMR spectroscopies were used for the characterization, while X-ray diffraction methods afforded the determination of the crystal structure. The compound is arranged in the crystal lattice as centre-symmetric H-bonded dimeric aggregates (C2/c monoclinic space group).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!