Accurate and in-time prediction of crop yield plays a crucial role in the planning, management, and decision-making processes within the agricultural sector. In this investigation, utilizing area under irrigation (%) as an exogenous variable, we have made an exertion to assess the suitability of different hybrid models such as ARIMAX (Autoregressive Integrated Moving Average with eXogenous Regressor)-TDNN (Time-Delay Neural Network), ARIMAX-NLSVR (Non-Linear Support Vector Regression), ARIMAX-WNN (Wavelet Neural Network), ARIMAX-CNN (Convolutional Neural Network), ARIMAX-RNN (Recurrent Neural Network) and ARIMAX-LSTM (Long Short Term Memory) as compared to their individual counterparts for yield forecasting of major Rabi crops in India. The accuracy of the ARIMA model has also been considered as a benchmark. Empirical outcomes reveal that the ARIMAX-LSTM hybrid modeling combination outperforms all other time series models in terms of root mean square error (RMSE) and mean absolute percentage error (MAPE) values. For these models, an average improvement of RMSE and MAPE values has been observed to be 10.41% and 12.28%, respectively over all other competing models and 15.83% and 18.42%, respectively over the benchmark ARIMA model. The incorporation of the area under irrigation (%) as an exogenous variable in the ARIMAX framework and the inbuilt capability of the LSTM model to process complex non-linear patterns have been observed to significantly enhance the accuracy of forecasting. The performance supremacy of other hybrid models over their individual counterparts has also been evident. The results also suggest avoiding any performance generalization of individual models for their hybrid structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721813PMC
http://dx.doi.org/10.1038/s41598-023-49544-wDOI Listing

Publication Analysis

Top Keywords

neural network
16
exogenous variable
12
time series
8
series models
8
yield forecasting
8
forecasting major
8
major rabi
8
rabi crops
8
crops india
8
area irrigation
8

Similar Publications

Right ventricular injury (RVI) in respiratory failure receiving veno-venous extracorporeal membrane oxygenation (VV ECMO) is associated with significant mortality. A scoping review is necessary to map the current literature and guide future research regarding the definition and management of RVI in patients receiving VV ECMO. We searched for relevant publications on RVI in patients receiving VV ECMO in Medline, EMBASE, and Web of Science.

View Article and Find Full Text PDF

Improving Recall Accuracy in Sparse Associative Memories That Use Neurogenesis.

Neural Comput

January 2025

Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

The creation of future low-power neuromorphic solutions requires specialist spiking neural network (SNN) algorithms that are optimized for neuromorphic settings. One such algorithmic challenge is the ability to recall learned patterns from their noisy variants. Solutions to this problem may be required to memorize vast numbers of patterns based on limited training data and subsequently recall the patterns in the presence of noise.

View Article and Find Full Text PDF

Replay as a Basis for Backpropagation Through Time in the Brain.

Neural Comput

January 2025

Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, U.S.A.

How episodic memories are formed in the brain is a continuing puzzle for the neuroscience community. The brain areas that are critical for episodic learning (e.g.

View Article and Find Full Text PDF

Introduction: The prevalence of neurodegenerative diseases has significantly increased, necessitating a deeper understanding of their symptoms, diagnostic processes, and prevention strategies. Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are two prominent neurodegenerative conditions that present diagnostic challenges due to overlapping symptoms. To address these challenges, experts utilize a range of imaging techniques, including magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).

View Article and Find Full Text PDF

Human mobility between different regions is a major factor in large-scale outbreaks of infectious diseases. Deep learning models incorporating infectious disease transmission dynamics for predicting the spread of multi-regional outbreaks due to human mobility have become a hot research topic. In this study, we incorporate the Graph Transformer Neural Network and graph learning mechanisms into a metapopulation SIR model to build a hybrid framework, Metapopulation Graph Transformer Neural Network (M-Graphormer), for high-dimensional parameter estimation and multi-regional epidemic prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!