Laboratory research in Ghana demonstrated the effectiveness of an isolate of Beauveria bassiana (IMI 389521) from the United Kingdom against the larger grain borer Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), a major pest of stored maize. The minimum effective concentration, following artificial infestation trials on maize, was between 10 and 10 cfu/kg maize. Before moving out to village-level control, a major requirement was to determine if the product could effect control in artificially infested maize held under real environmental conditions in several locations in Ghana. Therefore, this study investigated the efficacy of formulated conidia of B. bassiana, IMI 389521, at two concentrations (1 × 10 and 3.16 × 10 cfu/kg maize) to control P. truncatus on stored maize kernels under semi-field conditions in Ghana. Maize ('Obatanpa' cultivar) kernels were treated with the formulated B. bassiana product and stored in polypropylene woven bags in cribs in Southern Ghana. After 24 h, one hundred adults of P. truncatus were placed into each bag containing the treated maize. Mortality and the percent of weight loss of kernels were assessed every two weeks for three months. The semi-field trials revealed the possibility of successfully controlling adult P. truncatus on maize kernels treated with B. bassiana at 3.16 × 10 cfu/kg maize. However, due to the minimal protection of kernels after four weeks, re-treating maize kernels after this period is recommended to ensure maximum protection during prolonged storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.funbio.2023.08.004 | DOI Listing |
Environ Sci Process Impacts
January 2025
Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (, hypoxia, eutrophication) and public health (, nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.
View Article and Find Full Text PDFPlant Genome
March 2025
Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, USA.
Crossing over breaks linkages and leads to a wider array of allele combinations. My objective was to assess the contribution of crossing over to genetic variance (V) in maize (Zea mays L.) and wheat (Triticum aestivum L.
View Article and Find Full Text PDFNat Food
January 2025
Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA, USA.
Climate change poses substantial challenges to agriculture and crop production, but the combined role of nitrogen and water inputs in adaptation has been largely overlooked. Here, by developing regression models using US county-level data (2008-2020), we demonstrate that integrated optimization of irrigation and nitrogen inputs represents the most resource-efficient strategy to offset the climate-related yield losses. Under the 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!