Moso bamboo (Phyllostachys edulis) expansion enhances soil pH and alters soil nutrients and microbial communities.

Sci Total Environ

Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China. Electronic address:

Published: February 2024

Amid global environmental concerns, the issue of bamboo expansion has garnered significant attention due to its extensive and profound impacts on the ecosystems. Bamboo expansion occurs in native and introduced habitats worldwide, particularly in Asia. However, the effects of bamboo expansion on soil pH, nutrient levels, and microbial communities are complex and vary across different environments. To address this knowledge gap, we conducted a meta-analysis with 2037 paired observations from 81 studies. The results showed that soil pH increased by 6.99 % (0-20 cm) and 4.49 % (20-40 cm) after bamboo expansion. Notably, soil pH increased more in the coniferous forest with bamboo expansion than in the broadleaf forest. Soil pH progressively increased over time since the establishment of bamboo stands. The extent of soil pH elevation was significantly positively correlated with the proportion of bamboo within the forest stand and mean annual solar radiation. In contrast, it was significantly negatively correlated with the mean annual temperature. The elevation of pH is closely related to expansion stage and expanded forest type rather than primarily shaped by climatic factors across a large scale. We also found that bamboo expansion into coniferous forests brought about a notable 14.14 % reduction in total nitrogen (TN). Varied expansion stages resulted in TN reductions of 6.88 % and 7.99 % for mixed forests and bamboo stands, respectively, compared to native forests. Pure bamboo stands exhibited a remarkable 30.39 % increase in ammonium nitrogen and a significant 21.12 % decrease in nitrate nitrogen compared to their native counterparts. Furthermore, bamboo expansion contributed to heightened soil fungal diversity. Taken together, our findings highlight that bamboo expansion leads to an increase in soil pH and alters soil N components and fungal microbial communities, providing valuable insights for future ecological conservation and resource management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.169346DOI Listing

Publication Analysis

Top Keywords

bamboo expansion
32
microbial communities
12
bamboo
12
bamboo stands
12
expansion
11
soil
10
soil alters
8
alters soil
8
soil increased
8
compared native
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!