Biomolecules obtained from microorganisms living in extreme environments possess properties that have pharmacokinetic advantages. Enzyme assay revealed recombinant L-ASNase, an extremozyme from Pseudomonas sp. PCH199 is to be highly stable with 90 % activity (200 h) at 37 °C. The stability of the enzyme in human serum (50 % activity maintained in 63 h) reveals high therapeutic potential with less dosage. The enzyme exhibited cytotoxicity to K562 blood cancer cell lines with IC of 0.37 U/mL without affecting the IEC-6 normal epithelial cell line. Due to the depletion of L-asparagine, K562 cells experience nutritional stress that results in the abruption of metabolic processes and eventually leads to apoptosis. Comparative studies on MCF-7 cells also revealed the same fate. Due to nutritional stress induced by L-ASNase treatment, mitochondrial membrane potential was lost, and reactive oxygen species were increased to 48 % (K562) and 21 % (MCF-7) as indicated by flow cytometric analysis. DAPI staining with prominent nuclear morphological changes visualized under the fluorescent microscope confirmed apoptosis in both cancer cells. Treatment increases pro-apoptotic Bax protein, and eventually, the cell cycle is arrested at the G2/M phase in both cell lines. Therefore, the current study paves the way for PCH199 L-ASNase to be considered a potential chemotherapeutic agent for treating acute lymphoblastic leukemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.128739 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!