Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.24875/GMM.M23000825 | DOI Listing |
Int J Mol Sci
December 2024
Biotechnology Center, The Silesian University of Technology, 44-100 Gliwice, Poland.
Biomimetic natural biomaterial (BNBM) nanocomposite scaffolds for bone replacement can reduce the rate of implant failure and the associated risks of post-surgical complications for patients. Traditional bone implants, like allografts, and autografts, have limitations, such as donor site morbidity and potential patient inflammation. Over two million bone transplant procedures are performed yearly, and success varies depending on the material used.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.
There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.
View Article and Find Full Text PDFJ Orthop Res
December 2024
Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA.
Periprosthetic joint infection (PJI) is a leading cause and major complication of joint replacement failure. As opposed to standard-of-care systemic antibiotic prophylaxis for PJI, we developed and tested titanium femoral intramedullary implants with titania nanotubes (TNTs) coated with the antibiotic gentamicin and slow-release agent chitosan through electrophoretic deposition (EPD) in a mouse model of PJI. We hypothesized that these implants would enable local gentamicin delivery to the implant surface and surgical site, effectively preventing bacterial colonization.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
Int J Biol Macromol
December 2024
Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares Universirty, Tehran, Iran.
One of the most effective ways to solve the problems caused by the presence of steel implants in the body is to apply a coating to them. This study aims to develop and optimize composite coatings of magnesium oxide (MgO), 58S bioactive glass (BG), and N-carboxymethyl chitosan (N-CMC) on stainless steel (SS316L) substrates using the electrophoretic deposition (EPD) method. The synthesized materials were characterized using FTIR, XRD, and SEM to confirm their structure and morphology prior to coating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!