Organic-inorganic composite of polypropylene fumarate and nanohydroxyapatite as carrier of antibiotics for the treatment of bone infections.

Biomater Adv

Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre of Excellence for Orthopedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India. Electronic address:

Published: February 2024

AI Article Synopsis

Article Abstract

Current treatment approaches in clinics to treat the infectious lesions have partial success thus demanding the need for development of advanced treatment modalities. In this study we fabricated an organic-inorganic composite of polypropylene fumarate (PPF) and nanohydroxyapatite (nHAP) by photo-crosslinking as a carrier of two clinically used antibiotics, ciprofloxacin (CIP) and rifampicin (RFP) for the treatment of bone infections. Carboxy terminal-PPF was first synthesized by cis-trans isomerization of maleic anhydride which was then photo-crosslinked using diethylfumarate (DEF) as crosslinker and bis-acylphosphine oxide (BAPO) as photo-initiator under UV lights (P). A composite of PPF and nHAP was fabricated by incorporating 40 % of nHAP in the polymeric matrix of PPF (PH) which was then characterized for different physicochemical parameters. CIP was added along with nHAP to fabricated CIPloaded composite scaffolds (PHC) which was then coated with RFP to synthesize RFP coated CIP-loaded scaffolds (PHCR). It was observed that there was a temporal separation in the in vitro release of two antibiotics after coating PHC with RFP with 80.48 ± 0.40 % release of CIP from PHC and 62.43 ± 0.21 % release of CIP from PHCR for a period of 60 days. Moreover, in vitro protein adsorption was also found to be maximum in PHCR (154.95 ± 0.07 μg/mL) as observed in PHC (75.42 ± 0.06 μg/mL), PH (24.47 ± 0.08 μg/mL) and P alone (4.47 ± 0.02 μg/mL). The scaffolds were also evaluated using in vivo infection model to assess their capacity in reducing the bacterial burden at the infection site. The outcome of this study suggests that RFP coated CIP-loaded PPF composite scaffolds could reduce bacterial burden and simultaneously augment bone healing during infection related fractures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213714DOI Listing

Publication Analysis

Top Keywords

organic-inorganic composite
8
composite polypropylene
8
polypropylene fumarate
8
treatment bone
8
bone infections
8
nhap fabricated
8
composite scaffolds
8
rfp coated
8
coated cip-loaded
8
release cip
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!