The optimal performance of scaffolds for tissue engineering relies on a proper combination of their constituent biomaterials and on the design of their structure. In this work, composite scaffolds with a core-shell architecture are realized by grafting a gelatin-chitosan hydrogel onto a 3D-printed polylactic acid (PLA) core, aiming in particular at bone regeneration. This hydrogel was recently found to sustain osteogenic differentiation of mesenchymal stromal cells, leading to new bone tissue formation. Here, the integration with rigid PLA lattice structures provides improved mechanical support and finer control of strength and stiffness. The core is prepared by fused deposition modeling with the specific aim to study several lattice structures and thereby better tune the scaffold mechanical properties. In fact, the core architecture dictates the scaffold strength and stiffness, which are seen to match those of different types of bone tissue. For all lattice types, the hydrogel is found to penetrate throughout the entire core and to present highly interconnected pores for cell colonization. By varying the void volume fraction in the core it is possible to significantly change the bioactive shell content, as well as the mechanical properties, over a wide range of values. Looking for design guidelines, relationships between stiffness/strength and density are here outlined for scaffolds featuring different lattice parameters. Moreover, by acting on the core strut arrangement, scaffolds are reinforced along specific directions, as evaluated under compressive and bending loading conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2023.106305 | DOI Listing |
Cureus
December 2024
Department of Periodontics, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, IND.
The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.
View Article and Find Full Text PDFRecent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemical Engineering, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia, Av. Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
This study explores the characterization and application of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) synthesized from organic residues, specifically milk and molasses. Six PHBV samples with varying 3-hydroxyvalerate (3HV) content (7%, 15%, and 32%) were analyzed to assess how 3HV composition influences their properties. Comprehensive characterization techniques, including NMR, FTIR, XRD, DSC, TGA, and tensile-stress test, were used to evaluate the molecular structure, thermal properties, crystalline structure, and mechanical behavior.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!