The management of coronavirus necessitates that medicines are available, reasonably priced, and easy to administer. The work aimed at formulating and characterizing remdesivir and licorice extract nanoemulsions and comparing their efficacy against coronavirus for further subcutaneous injection. First, the solubility of remdesivir was determined in different oils, surfactants, and co-surfactants to choose the optimal nanoemulsion components. Nanoemulsions were optimized concerning surfactant: co-surfactant ratio (5:1, 4:1, 3:1, 2:1, and 1:1) and oil to surfactant: co-surfactant ratio (1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, and 1:1). The formulations were evaluated concerning % transmittance, emulsification time, pH, viscosity, droplet size, polydispersity index, zeta potential, drug content, transmission electron microscopy, in-vitro drug release, stability (of the optimal formulas), and antiviral effect against coronavirus. The optimal nanoemulsion formula was F7, exhibiting an acceptable pH level, a rapid emulsification rate, a viscosity of 20 cP, and 100% drug content. The formulation droplet size was 16 and 17 nm, the polydispersity index was 0.18 and 0.26, and the zeta potential was - 6.29 and - 10.34 mV for licorice extract and remdesivir nanoemulsions, respectively. However, licorice extract nanoemulsion exhibited better release and physical stability. Licorice extract nanoemulsion may be a potential subcutaneous injection for combating mild to moderate coronavirus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2023.113703 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!