When threatened by dangerous or harmful stimuli, animals engage in diverse forms of rapid escape behaviors. In larvae, one type of escape response involves C-shaped bending and lateral rolling followed by rapid forward crawling. The sensory circuitry that promotes larval escape has been extensively characterized; however, the motor programs underlying rolling are unknown. Here, we characterize the neuromuscular basis of rolling escape behavior. We used high-speed, volumetric, Swept Confocally Aligned Planar Excitation (SCAPE) microscopy to image muscle activity during larval rolling. Unlike sequential peristaltic muscle contractions that progress from segment to segment during forward and backward crawling, muscle activity progresses circumferentially during bending and rolling escape behavior. We propose that progression of muscular contraction around the larva's circumference results in a transient misalignment between weight and the ground support forces, which generates a torque that induces stabilizing body rotation. Therefore, successive cycles of slight misalignment followed by reactive aligning rotation lead to continuous rolling motion. Supporting our biomechanical model, we found that disrupting the activity of muscle groups undergoing circumferential contraction progression leads to rolling defects. We use EM connectome data to identify premotor to motor connectivity patterns that could drive rolling behavior and perform neural silencing approaches to demonstrate the crucial role of a group of glutamatergic premotor neurons in rolling. Our data reveal body-wide muscle activity patterns and putative premotor circuit organization for execution of the rolling escape response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10743538 | PMC |
http://dx.doi.org/10.1073/pnas.2303641120 | DOI Listing |
ACS Omega
December 2024
Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
Telomerase activation can lead to the escape from cell senescence and immortalization, playing a crucial role in the growth and proliferation of cancer cells. Therefore, the detection of telomerase activity is essential for cancer diagnosis and treatment. Herein, we develop a novel ultrasensitive and visually detectable platform.
View Article and Find Full Text PDFBio Protoc
December 2024
Department of Biology, Texas A&M University, College Station, TX, USA.
larvae exhibit rolling motor behavior as an escape response to avoid predators and painful stimuli. We introduce an accessible method for applying optogenetics to study the motor circuits driving rolling behavior. For this, we simultaneously implement the Gal4-UAS and LexA-Aop binary systems to express two distinct optogenetic channels, GtACR and Chrimson, in motor neuron (MN) subsets and rolling command neurons (Goro), respectively.
View Article and Find Full Text PDFInfect Dis Model
March 2025
School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
The field of software engineering is advancing at astonishing speed, with packages now available to support many stages of data science pipelines. These packages can support infectious disease modelling to be more robust, efficient and transparent, which has been particularly important during the COVID-19 pandemic. We developed a package for the construction of infectious disease models, integrated it with several open-source libraries and applied this composite pipeline to multiple data sources that provided insights into Australia's 2022 COVID-19 epidemic.
View Article and Find Full Text PDFJ Gastroenterol
November 2024
Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
Background: Defective hepatitis C virus (HCV) genomes with deletion of the envelope region have been occasionally reported by short-read sequencing analyses. However, the clinical and virological details of such deletion HCV have not been fully elucidated.
Methods: We developed a highly accurate single-molecule sequencing system for full-length HCV genes by combining the third-generation nanopore sequencing with rolling circle amplification (RCA) and investigated the characteristics of deletion HCV through the analysis of 21 patients chronically infected with genotype-1b HCV.
Elife
August 2024
Department of Biology, McGill University, Montreal, Canada.
Escape behaviors help animals avoid harm from predators and other threats in the environment. Successful escape relies on integrating information from multiple stimulus modalities (of external or internal origin) to compute trajectories toward safe locations, choose between actions that satisfy competing motivations, and execute other strategies that ensure survival. To this end, escape behaviors must be adaptive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!