Flying qubits encode quantum information in propagating modes instead of stationary discrete states. Although photonic flying qubits are available, the weak interaction between photons limits the efficiency of conditional quantum gates. Conversely, electronic flying qubits can use Coulomb interactions, but the weaker quantum coherence in conventional semiconductors has hindered their realization. In this work, we engineered on-demand injection of a single electronic flying qubit state and its manipulation over the Bloch sphere. The flying qubit is a Leviton propagating in quantum Hall edge channels of a high-mobility graphene monolayer. Although single-shot qubit readout and two-qubit operations are still needed for a viable manipulation of flying qubits, the coherent manipulation of an itinerant electronic state at the single-electron level presents a highly promising alternative to conventional qubits.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adf9887DOI Listing

Publication Analysis

Top Keywords

flying qubits
16
electronic flying
8
flying qubit
8
flying
6
qubits
5
emission coherent
4
coherent control
4
control levitons
4
levitons graphene
4
graphene flying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!