Proteins are fundamental components of diverse cellular systems and play crucial roles in a variety of disease processes. Consequently, it is crucial to comprehend their structure, function, and intricate interconnections. Classifying proteins into families or groups with comparable structural and functional characteristics is a crucial aspect of this comprehension. This classification is crucial for evolutionary research, predicting protein function, and identifying potential therapeutic targets. Sequence alignment and structure-based alignment are frequently ineffective techniques for identifying protein families.This study addresses the need for a more efficient and accurate technique for feature extraction and protein classification. The research proposes a novel method that integrates bispectrum characteristics, deep learning techniques, and machine learning algorithms to overcome the limitations of conventional methods. The proposed method uses numbers to represent protein sequences, utilizes bispectrum analysis, uses different topologies for convolutional neural networks to pull out features, and chooses robust features to classify protein families. The goal is to outperform existing methods for identifying protein families, thereby enhancing classification metrics. The materials consist of numerous protein datasets, whereas the methods incorporate bispectrum characteristics and deep learning strategies. The results of this study demonstrate that the proposed method for identifying protein families is superior to conventional approaches. Significantly enhanced quality metrics demonstrated the efficacy of the combined bispectrum and deep learning approaches. These findings have the potential to advance the field of protein biology and facilitate pharmaceutical innovation. In conclusion, this study presents a novel method that employs bispectrum characteristics and deep learning techniques to improve the precision and efficiency of protein family identification. The demonstrated advancements in classification metrics demonstrate this method's applicability to numerous scientific disciplines. This furthers our understanding of protein function and its implications for disease and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721063PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295805PLOS

Publication Analysis

Top Keywords

deep learning
20
protein
12
identifying protein
12
bispectrum characteristics
12
characteristics deep
12
protein families
12
protein classification
8
machine learning
8
protein function
8
novel method
8

Similar Publications

Background: Comprehensive clinical data regarding factors influencing the individual disease course of patients with movement disorders treated with deep brain stimulation might help to better understand disease progression and to develop individualized treatment approaches.

Methods: The clinical core data set was developed by a multidisciplinary working group within the German transregional collaborative research network ReTune. The development followed standardized methodology comprising review of available evidence, a consensus process and performance of the first phase of the study.

View Article and Find Full Text PDF

Enhancing furcation involvement classification on panoramic radiographs with vision transformers.

BMC Oral Health

January 2025

Department of Periodontics, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Research Institute of Stomatology, Nanjing University, Nanjing, China.

Background: The severity of furcation involvement (FI) directly affected tooth prognosis and influenced treatment approaches. However, assessing, diagnosing, and treating molars with FI was complicated by anatomical and morphological variations. Cone-beam computed tomography (CBCT) enhanced diagnostic accuracy for detecting FI and measuring furcation defects.

View Article and Find Full Text PDF

Learning by making - student-made models and creative projects for medical education: systematic review with qualitative synthesis.

BMC Med Educ

January 2025

Department of Anatomy, Clinical Sciences Building, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308323, Singapore.

Study Objective: Student-centered learning and unconventional teaching modalities are gaining popularity in medical education. One notable approach involves engaging students in producing creative projects to complement the learning of preclinical topics. A systematic review was conducted to characterize the impact of creative project-based learning on metacognition and knowledge gains in medical students.

View Article and Find Full Text PDF

Background: To develop and test the performance of a fully automated system for classifying renal tumor subtypes via deep machine learning for automated segmentation and classification.

Materials And Methods: The model was developed using computed tomography (CT) images of pathologically proven renal tumors collected from a prospective cohort at a medical center between March 2016 and December 2020. A total of 561 renal tumors were included: 233 clear cell renal cell carcinomas (RCCs), 82 papillary RCCs, 74 chromophobe RCCs, and 172 angiomyolipomas.

View Article and Find Full Text PDF

Infertility has emerged as a significant global health concern. Assisted reproductive technology (ART) assists numerous infertile couples in conceiving, yet some experience repeated, unsuccessful cycles. This study aims to identify the pivotal clinical factors influencing the success of fresh embryo transfer of in vitro fertilization (IVF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!