The short frames of low-count positron emission tomography (PET) images generally cause high levels of statistical noise. Thus, improving the quality of low-count images by using image postprocessing algorithms to achieve better clinical diagnoses has attracted widespread attention in the medical imaging community. Most existing deep learning-based low-count PET image enhancement methods have achieved satisfying results, however, few of them focus on denoising low-count PET images with the magnetic resonance (MR) image modality as guidance. The prior context features contained in MR images can provide abundant and complementary information for single low-count PET image denoising, especially in ultralow-count (2.5%) cases. To this end, we propose a novel two-stream dual PET/MR cross-modal interactive fusion network with an optical flow pre-alignment module, namely, OIF-Net. Specifically, the learnable optical flow registration module enables the spatial manipulation of MR imaging inputs within the network without any extra training supervision. Registered MR images fundamentally solve the problem of feature misalignment in the multimodal fusion stage, which greatly benefits the subsequent denoising process. In addition, we design a spatial-channel feature enhancement module (SC-FEM) that considers the interactive impacts of multiple modalities and provides additional information flexibility in both the spatial and channel dimensions. Furthermore, instead of simply concatenating two extracted features from these two modalities as an intermediate fusion method, the proposed cross-modal feature fusion module (CM-FFM) adopts cross-attention at multiple feature levels and greatly improves the two modalities' feature fusion procedure. Extensive experimental assessments conducted on real clinical datasets, as well as an independent clinical testing dataset, demonstrate that the proposed OIF-Net outperforms the state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2023.3342809 | DOI Listing |
Psychon Bull Rev
January 2025
NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
We examined the intricate mechanisms underlying visual processing of complex motion stimuli by measuring the detection sensitivity to contraction and expansion patterns and the discrimination sensitivity to the location of the center of motion (CoM) in various real and unreal optic flow stimuli. We conducted two experiments (N = 20 each) and compared responses to both "real" optic flow stimuli containing information about self-movement in a three-dimensional scene and "unreal" optic flow stimuli lacking such information. We found that detection sensitivity to contraction surpassed that to expansion patterns for unreal optic flow stimuli, whereas this trend was reversed for real optic flow stimuli.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China. Electronic address:
Evodiamine, a chiral quinazoline alkaloid in the traditional Chinese medicine Evodiae fructus, exhibited efficacy for CNS diseases. In this study, the pure enantiomers of evodiamine were prepared in large quantities via chemical resolution. Their structures were elucidated by MS, NMR and ECD.
View Article and Find Full Text PDFCornea
January 2025
Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA.
Purpose: To report on optical coherence tomography angiography (OCTA) in patients with a type 1 Boston keratoprosthesis (KPro) and determine its feasibility through assessment of imaging artifacts.
Methods: KPro and non-KPro subjects were matched for age, gender, and glaucoma diagnosis. OCTA images of the peripapillary optic nerve were obtained, reviewed by 2 readers masked to the diagnosis for artifacts and usability, and used for microvascular measurements.
J Soc Cardiovasc Angiogr Interv
December 2024
Imperial College London, United Kingdom.
Background: The mechanistic association between the hydraulic forces generated during contrast injection and the risk of coronary injury is poorly understood. In this study, we sought to evaluate whether contrast injections increase intracoronary pressures beyond resting levels and estimate the risk of hydraulic propagation of coronary dissections.
Methods: This is a prospective, single-arm, multicenter study that included patients with nonculprit, non-flow-limiting coronaries.
Tissue Eng Regen Med
January 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.
Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!