Natural polyamines such as spermidine and spermine cations have characteristics that make them highly likely to be sensed by riboswitches, such as their general affinity to polyanionic RNA and their broad contributions to cell physiology. Despite previous claims that polyamine riboswitches exist, evidence of their biological functions has remained unconvincing. Here, we report that rare variants of bacterial S-adenosylmethionine-I (SAM-I) riboswitches reject SAM and have adapted to selectively sense spermidine. These spermidine-sensing riboswitch variants are associated with genes whose protein products are directly involved in the production of spermidine and other polyamines. Biochemical and genetic assays demonstrate that representatives of this riboswitch class robustly function as genetic "off" switches, wherein spermidine binding causes premature transcription termination to suppress the expression of polyamine biosynthetic genes. These findings confirm the existence of natural spermidine-sensing riboswitches in bacteria and expand the list of variant riboswitch classes that have adapted to bind different ligands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853860 | PMC |
http://dx.doi.org/10.1016/j.celrep.2023.113571 | DOI Listing |
ACS Omega
December 2024
Laboratory for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute (IOC - FIOCRUZ), Rio de Janeiro 21040-900, Brazil.
The rising incidence of fungal infections coupled with limited treatment options underscores the urgent need for novel antifungal therapies. Riboswitches, particularly thiamin pyrophosphate (TPP) class, have emerged as promising antimicrobial targets. This study presents a comprehensive genome-wide analysis of TPP riboswitches in 156 medically relevant fungi utilizing advanced covariance models (CMs) tailored for fungal sequences.
View Article and Find Full Text PDFbioRxiv
December 2024
School of Biomedical Engineering, Colorado State University Fort Collins, CO 80523, USA.
Chem Commun (Camb)
December 2024
University of Oregon Department of Chemistry and Biochemistry, Eugene, USA.
The Class II NAD riboswitch is a bacterial RNA that binds ligands containing nicotinamide. Herein, we report a fluorescence and biolayer interferometry study of riboswitch interactions with β-NMN. The results reveal a shift in the prevalence of a pseudoknot structure in the presence of ligand and Mg.
View Article and Find Full Text PDFElife
December 2024
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
Riboswitches represent a class of non-coding RNA that possess the unique ability to specifically bind ligands and, in response, regulate gene expression. A recent report unveiled a type of riboswitch, known as the guanidine-IV riboswitch, which responds to guanidine levels to regulate downstream genetic transcription. However, the precise molecular mechanism through which the riboswitch senses its target ligand and undergoes conformational changes remain elusive.
View Article and Find Full Text PDFThe Class II NAD riboswitch is a bacterial RNA that binds ligands containing nicotinamide. Herein, we report a fluorescence and biolayer interferometry study of riboswitch interactions with β-NMN. The results reveal a shift in the prevalence of a pseudoknot structure in the presence of ligand and Mg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!