The efficient role of sodium alginate-based biodegradable dressings for skin wound healing application: a systematic review.

J Biomater Sci Polym Ed

Postgraduate Program in Materials Technology and Industrial Processes, Feevale University, Novo Hamburgo, Brazil.

Published: February 2024

Injuries and damage to the skin can be caused by different reasons throughout human life. The use of sodium alginate in tissue dressing has been highly studied due to its intrinsic properties, including its degradation rate and biocompatibility, and the capacity of supporting tissue proliferation. The aim of this paper is to demonstrate evidences, through a systematic review method, to support the application of sodium alginate as a curative and as a potential accelerator in the healing of skin wounds. Four databases were used to develop this systematic review: Science Direct, PubMed, Scielo and Scopus. The time interval established for the search was from January 2016 to October 2023. After applying the exclusion and inclusion criteria, each selected article was evaluated and it was observed that the improvement of the mechanical properties of sodium alginate when correctly processed and crosslinked were evident. However, the increase of crosslinking affects as the wettability and the swelling of the biomaterials can cause limitations in mechanical properties and hidrophilic behavior. To achieve the ideal dressing, it is necessary to apply the optimal concentration of crosslinking and other substances, which can damage its hidrophilic characteristic. Thus, it was concluded that sodium alginate has every caracteristic desirable to develop an effective and safe dressing.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2023.2289247DOI Listing

Publication Analysis

Top Keywords

sodium alginate
16
systematic review
12
mechanical properties
8
sodium
5
efficient role
4
role sodium
4
sodium alginate-based
4
alginate-based biodegradable
4
biodegradable dressings
4
dressings skin
4

Similar Publications

is an invasive brown macroalga that has recently proliferated in the western Mediterranean Sea, causing significant environmental challenges. This alga, however, contains valuable bioactive compounds-alginate, mannitol, and phlorotannins-that can serve as biofertilizers to promote plant growth and aid in bioremediation of degraded or contaminated soils. This study focused on optimizing the extraction of these compounds from , transforming an ecological issue into a beneficial resource.

View Article and Find Full Text PDF

Background: This study aimed to compare the effects of a carbohydrate (CHO) hydrogel with (ALG-CP) or without (ALG-C) branched-chain amino acids, and a CHO-only non-hydrogel (CON), on cycling performance. The hydrogels, encapsulated in an alginate matrix, are designed to control CHO release, potentially optimising absorption, increasing substrate utilisation, and reducing gastrointestinal distress as well as carious lesions.

Methods: In a randomised, double-blinded, crossover trial, 10 trained male cyclists/triathletes completed three experimental days separated by ~6 days.

View Article and Find Full Text PDF

Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use.

View Article and Find Full Text PDF

Calcium alginate hydrogel is one of the most widely used materials for drug-carrier beads used in drug-delivery systems. In this study, we developed a new method to improve the encapsulation efficiency of ingredients, such as medicines, in calcium alginate hydrogel beads. In the gold standard method, the hydrogel beads are prepared in the liquid phase.

View Article and Find Full Text PDF

The limited self-repair capacity of cartilage due to its avascular and aneural nature leads to minimal regenerative ability. Autologous chondrocyte transplantation (ACT) is a popular treatment for cartilage defects but faces challenges due to chondrocyte dedifferentiation in later passages, which results in undesirable fibroblastic phenotypes. A promising treatment for cartilage injuries and diseases involves tissue engineering using cells (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!