Purpose: This study aimed to assess the ability of [C]methionine (MET) PET in distinguishing between tumor progression (TP) and treatment-related changes (TRCs) among different types of adult-type diffuse gliomas according to the 2021 World Health Organization classification and predict overall survival (OS).
Methods: We retrospectively selected 113 patients with adult-type diffuse gliomas with suspected TP who underwent MET PET imaging. Maximum and mean tumor-to-background ratios (TBR, TBR) and metabolic tumor volume (MTV) were calculated. Diagnoses were verified by histopathology (n = 50) or by clinical/radiological follow-up (n = 63). The diagnostic performance of MET PET parameters was evaluated through receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculation. Survival analysis employed the Kaplan-Meier method and Cox proportional-hazards regression.
Results: TP and TRCs were diagnosed in 76 (67%) and 37 (33%) patients, respectively. ROC analysis revealed TBR had the best performance in differentiating TP from TRCs with a cut-off of 1.96 in IDH-mutant astrocytoma (AUC, 0.87; sensitivity, 93%; specificity 69%), 1.80 in IDH-mutant and 1p/19q-codeleted oligodendroglioma (AUC, 0.96; sensitivity, 100%; specificity, 89%), and 2.13 in IDH wild-type glioblastoma (AUC, 0.89; sensitivity, 89%; specificity, 78%), respectively. On multivariate analysis, higher TBR and MTV were significantly correlated with shorter OS in all IDH-mutant gliomas, as well as in IDH-mutant astrocytoma subgroup.
Conclusion: This work confirms that MET PET has varying diagnostic performances in distinguishing TP from TRCs within three types of adult-type diffuse gliomas, and highlights its high diagnostic accuracy in IDH-mutant and 1p/19q-codeleted oligodendroglioma and potential prognostic value for IDH-mutant gliomas, particularly IDH-mutant astrocytoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11060-023-04529-7 | DOI Listing |
Int J Mol Sci
January 2025
Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland.
Adult-type diffuse gliomas are characterized by inevitable recurrence and very poor prognosis. Novel treatment options, including multimodal drugs or effective drug combinations, are therefore eagerly awaited. Tinostamustine is an alkylating and histone deacetylase inhibiting molecule with great potential in cancer treatment.
View Article and Find Full Text PDFPathology
December 2024
Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
In the course of the last decade, the pathological diagnosis of many tumours of the central nervous system (CNS) has transitioned from a purely histological to a combined histological and molecular approach, resulting in a more precise 'histomolecular diagnosis'. Unfortunately, translation of this refinement in CNS tumour diagnostics into more effective treatment strategies is lagging behind. There is hope though that incorporating the assessment of predictive markers in the pathological evaluation of CNS tumours will help to improve this situation.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.Z., Y.L., Y.L., Y.D., N.S., Y.X., S.Y., Y.F., J.Z., D.L., L.L., W.Z.). Electronic address:
Rationale And Objectives: Isocitrate dehydrogenase (IDH) status, glioma subtypes and tumor proliferation are important for glioma evaluation. We comprehensively compare the diagnostic performance of amide proton transfer-weighted (APTw) MRI and its related metrics in glioma diagnosis, in the context of the latest classification.
Materials And Methods: Totally 110 patients with adult-type diffuse gliomas underwent APTw imaging.
Cancer Med
January 2025
Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: The 2021 WHO Classification of Central Nervous System Tumors introduces more molecular markers for glioma reclassification, including TERT promoter (TERTp) mutation as a key feature in glioblastoma diagnosis.
Aims: Given the changes in the entities included in each subtype under the new classification, this research investigated the distribution, prognostic value, and correlations with other molecular alterations of TERTp mutation in different subgroups under this latest classification.
Methods: All glioma patients admitted to Peking Union Medical College Hospital for surgical resection or biopsy from 2011 to 2022 were included.
World J Radiol
December 2024
Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, Chongqing, China.
Background: Despite the increasing number of publications on glioma radiomics, challenges persist in clinical translation.
Aim: To assess the development and reporting quality of radiomics in brain gliomas since 2019.
Methods: A bibliometric analysis was conducted to reveal trends in brain glioma radiomics research.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!