A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the potential nationwide distribution of the snail vector, Oncomelania hupensis quadrasi, in the Philippines using the MaxEnt algorithm. | LitMetric

AI Article Synopsis

  • Schistosomiasis affects around 12 million people in the Philippines, primarily due to a lack of awareness and limited prevention efforts.
  • The study uses GIS and MaxEnt algorithms to identify high-risk habitats for the snail vector O. h. quadrasi, which is crucial for the life cycle of Schistosoma japonicum.
  • Results indicate that factors like temperature and precipitation influence snail distribution, with several regions identified as high-suitability habitats, and climate change may further expand transmission zones.

Article Abstract

Schistosomiasis remains a major public health concern affecting approximately 12 million people in the Philippines due to inadequate information about the disease and limited prevention and control efforts. Schistosoma japonicum, one of the causative agents of the disease, requires an amphibious snail Oncomelania hupensis quadrasi (O. h. quadrasi) to complete its life cycle. Using the geographical information system (GIS) and maximum entropy (MaxEnt) algorithm, this study aims to predict the potential high-risk habitats of O. h. quadrasi driven by environmental factors in the Philippines. Based on the bioclimatic determinants, a very high-performance model was generated (AUC = 0.907), with the mean temperature of the driest quarter (25.3%) contributing significantly to the prevalence of O. h. quadrasi. Also, the snail vector has a high focal distribution, preferring areas with a pronounced wet season and high precipitation throughout the year. However, the findings provided evidence for snail adaptation to different environmental conditions. High suitability of snail habitats was found in Quezon, Camarines Norte, Camarines Sur, Albay, Sorsogon, Northern Samar, Eastern Samar, Leyte, Bohol, Surigao del Norte, Surigao del Sur, Agusan del Norte, Davao del Norte, North Cotabato, Lanao del Norte, Misamis Occidental, and Zamboanga del Sur. Furthermore, snail habitat establishment includes natural and man-made waterlogged areas, with the progression of global warming and climate change predicted to be drivers of increasing schistosomiasis transmission zones in the country.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-023-08032-wDOI Listing

Publication Analysis

Top Keywords

del norte
16
snail vector
8
oncomelania hupensis
8
hupensis quadrasi
8
maxent algorithm
8
surigao del
8
del sur
8
snail
6
del
6
quadrasi
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!