Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and reliable fingerprinting technique. However, its analytical capability is closely related to the quality of a SERS substrate used for the analysis. In particular, conventional colloidal substrates possess disadvantages in terms of controllability, stability, and reproducibility, which limit their application. In order to address these issues, a simple, cost-effective, and efficient SERS substrate based on silver nanoparticle arrays (Ag NPAs) and sandpaper-molded polydimethylsiloxane (SMP) was proposed in this work. Successfully prepared via template lithography and liquid-liquid interface self-assembly (LLISA), the substrate can be applied to the specific detection of organic dyes in the environment. The substrate exhibited good SERS performance, and the limit of detection (LOD) of rhodamine 6G (R6G) was shown to be 10 M under the optimal conditions (1000 grit sandpaper) with a relative standard deviation (RSD) of 7.76%. Moreover, the SERS signal intensity was maintained at 60% of the initial intensity after the substrate was stored for 30 days. In addition, the Ag NPAs/SMP SERS substrate was also employed to detect crystal violet (CV) and methylene blue (MB) with the LODs of 10 M and 10 M, respectively. In summary, the Ag NPAs/SMP SERS substrate prepared in this study has great potential for the detection of organic dyes in ecological environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-023-05094-8DOI Listing

Publication Analysis

Top Keywords

sers substrate
20
detection organic
12
organic dyes
12
npas/smp sers
12
sers
8
substrate
8
lithography liquid-liquid
8
liquid-liquid interface
8
interface self-assembly
8
detection
4

Similar Publications

Fabrication of Ag based Surface Enhanced Raman Scattering substrates with periodic mask arrays by electron beam deposition.

Anal Chim Acta

February 2025

Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.

Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).

View Article and Find Full Text PDF

Aiming toward a novel, noninvasive technique, with a real-time potential application in the monitoring of the complexation of steroidal neuromuscular blocker drugs Vecuronium () and Rocuronium () with sugammadex (, medication for the reversal of neuromuscular blockade induced by or in general anesthesia), we developed proof-of-principle methodology based on surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles prepared by the reduction of silver ions with hydroxylamine hydrochloride were used as SERS-active substrates, additionally aggregated with calcium nitrate as needed. The and SERS spectra were obtained within the biorelevant 5 × 10-1 × 10 M range, as well as the SERS of , though the latter was observed only in the presence of the aggregating agent.

View Article and Find Full Text PDF

Factors that Affect Quantification in Surface-Enhanced Raman Scattering.

ACS Nano

January 2025

Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada.

Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS.

View Article and Find Full Text PDF

SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping.

Biosensors (Basel)

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.

High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by 6-deoxy-6-thio-β-cyclodextrin (β-CD-SH). This protocol allows for the rapid assembly of a compact silver nanoparticle (Ag NP) monolayer at the oil/water interface within 40 s, while entrapping analyte molecules within hotspots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!