Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756123 | PMC |
http://dx.doi.org/10.18632/aging.205433 | DOI Listing |
Cell Death Differ
January 2025
Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Aging is a major risk factor for Alzheimer's disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient's brain.
View Article and Find Full Text PDFNat Commun
January 2025
Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
Axonal fusion represents an efficient way to recover function after nerve injury. However, how axonal fusion is induced and regulated remains largely unknown. We discover that ferroptosis signaling can promote axonal fusion and functional recovery in C.
View Article and Find Full Text PDFNat Methods
January 2025
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.
View Article and Find Full Text PDFBrain Res
January 2025
Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China. Electronic address:
Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors.
View Article and Find Full Text PDFPLoS Biol
January 2025
Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China.
The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!