Lithium metal batteries (LMBs) with high energy density have received widespread attention; however, there are usually issues with lithium dendrite growth and safety. Therefore, there is a demand for solid electrolytes with high mechanical strength, room-temperature ionic conductivity, and good interface performance. Herein, a 3D cross-linked metal-organic framework (MOF)-derived polymer solid electrolyte exhibits good mechanical and ionic conductive properties simultaneously, in which the MOF with optimized pore size and strong imidazole cation sites can restrict the migration of anions, resulting in a uniform Li flux and a high lithium-ion transference number (0.54). Moreover, the MOF-derived polymer solid electrolytes with the 3D cross-linked network can promote the rapid movement of Li and inhibit the growth of lithium dendrites. Lithium symmetric batteries assembled with the 3D MOF-derived polymer solid electrolytes are subjected to lithium plating/stripping and cycled over 2000 h at a current density of 0.1 mA cm and over 800 h at a current density of 0.2 mA cm. The Li/P-PETEA-MOF/LiFePO batteries exhibit excellent long-cycle stability and cycle reversibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202309317 | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
High-performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF-derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade-off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in-plane: 7311 S cm⁻¹, out-of-plane: 5541 S cm⁻¹) and excellent mechanical strength (flexural: 101.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
Biomaterials
May 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China; Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. Electronic address:
In medical and biomedical fields, enzyme-mimetic nanomaterials have garnered significant interest as efficacious signal enhancers for biocatalyst-linked immunosorbent assays (BLISA). Despite the burgeoning enthusiasm, engineering artificial biocatalysts that exhibit both exceptional catalytic proficiency and pronounced colorimetric signal output remains a formidable challenge. Inspired by the heme structures and biocatalytic activities of horseradish peroxidase, we introduce the synthesis of vanadium single-atoms (SAV) coordinated artificial peroxidases as BLISA for highly sensitive and selective carcinoembryonic antigen (CEA) immunoassay.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.
Heavy metal ion pollution poses a serious threat to the natural environment and human health. Photoreduction through Bi-based photocatalysts is regarded as an advanced green technology for solving environmental problems. However, their photocatalytic activity is limited by the rapid recombination of photogenerated e and h pairs and a low photo-quantum efficiency.
View Article and Find Full Text PDFMolecules
November 2024
School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China.
Designing and fabricating a highly sensitive non-enzymatic glucose sensor is crucial for the early detection and management of diabetes. Meanwhile, the development of innovative electrode substrates has become a key focus for addressing the growing demand for constructing flexible sensors. Here, a simple one-step laser engraving method is applied for preparing laser-induced graphene (LIG) on polyimide (PI) film, which serves as the sensor substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!