Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of porous organic polymers, specifically covalent organic frameworks (COFs), has facilitated the advancement of numerous applications. Nevertheless, the limited availability of COFs solely in powder form imposes constraints on their potential applications. Furthermore, it is worth noting that COFs tend to undergo aggregation, leading to a decrease in the number of active sites available within the material. This work presents a comprehensive methodology for the transformation of a COF into three-dimensional (3D) scaffolds using the technique of 3D printing. As part of the 3D printing process, a composite material called CelloCOF was created by combining cellulose nanofibrils (CNF), sodium alginate, and COF materials (i.e., COF-1 and COF-2). The intervention successfully mitigated the agglomeration of the COF nanoparticles, resulting in the creation of abundant active sites that can be effectively utilized for adsorption purposes. The method of 3D printing can be described as a simple and basic procedure that can be adapted to accommodate hierarchical porous materials with distinct micro- and macropore regimes. This technology demonstrates versatility in its use across a range of COF materials. The adsorption capacities of 3D CelloCOF materials were evaluated for three different adsorbates: carbon dioxide (CO), heavy metal ions, and perfluorooctanesulfonic acid (PFOS). The results showed that the materials exhibited adsorption capabilities of 19.9, 7.4-34, and 118.5-410.8 mg/g for CO, PFOS, and heavy metals, respectively. The adsorption properties of the material were found to be outstanding, exhibiting a high degree of recyclability and exceptional selectivity. Based on our research findings, it is conceivable that the utilization of custom-designed composites based on COFs could present new opportunities in the realm of water and air purification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10755704 | PMC |
http://dx.doi.org/10.1021/acsami.3c13966 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!