Urban wastewater, as the main influent type of Waste Water Treatment Plants (WWTPs), has the characteristic of low carbon to nitrogen ratio (C/N). In the biological nitrogen removal (BNR) process, insufficient carbon source often affects the nitrogen removal efficiency and leads to more NO emissions. We review recent researches on NO emissions in the BNR process of wastewater with low C/N. The availability of carbon sources affects heterotrophic denitrification (HD) and autotrophic nitrification/denitrification processes, which are the main reasons for NO emissions in BNR. For the sustainable development of BNR in WWTPs, we introduce strategies suitable for reducing NO emissions in the BNR process of low C/N wastewater from two aspects: traditional process innovation and new process development. These strategies mainly include carbon source addition, adjustment of aeration strategy, optimization of oxidation ditch and biofilm facilities, and application of Anammox related processes. In the future, it is still necessary to further deepen this research direction through the normalization of NO emission quantification standards, exploration of NO metabolism mechanisms, assessment of environmental effects of emission reduction strategies, and practical application of new processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716488 | PMC |
http://dx.doi.org/10.3389/fbioe.2023.1247711 | DOI Listing |
Sci Rep
January 2025
Hydrobiology Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.
View Article and Find Full Text PDFBioresour Technol
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China.
Extracellular polymeric substances (EPS) are well-acknowledged to accelerate microalgal biofilm formation, yet specific role of stratified EPS is unknown. Bacterial biofilm stratified EPS could enrich phosphorus, whether microalgal biofilm stratified EPS could also realize phosphorus or nitrogen enrichment remains unclarified. This study investigated microalgae dominant biofilm growth characteristics and nutrients removal via inoculating microalgae and stratified bacterial EPS at various microalgae:bacteria ratios.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China. Electronic address:
In the single-stage partial nitritation-anammox process for high-ammonium wastewater treatment, the presence of sufficient biomass with high activity is essential. This study developed an innovative airlift inner-circulation partition bioreactor (AIPBR) with a dual-cylinder structure. During the 362 days' operation, the AIPBR exhibited robust and stable nitrogen removal performance under diverse influent ammonium spanning from 300 to 1800 mg N/L.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China. Electronic address:
Nitrate pollution poses severe risks to aquatic ecosystems and human health. The electrocatalytic nitrate reduction reaction (NITRR) offers a promising environmental and economic solution for nitrate pollution treatment and nitrogen source recovery; however, it continues to experience limited efficiency in neutral electrolytes. This study explores the heterointerface activation effects of TiO/CuO heterogeneous catalysts with rutile (R-TiO) and anatase (A-TiO) phases and reveals that R-TiO is an active crystal phase with high nitrate reduction performance.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely professional University, Phagwara, Punjab, India. Electronic address:
Gallic acid (GA) has emerged as a low biodegradable and high acidity industrial effluent. Due to mutagenic and carcinogenic nature of GA, it becomes essential to remove it from wastewater. Different chemical, physical and biological methods are being used for this purpose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!