Algal blooms on the Southern California coast are typically dominated by diatom and dinoflagellate taxa, and are governed by their physiological responses to environmental cues; however, we lack a predictive understanding of the environmental controls underlying the establishment and persistence of these distinct bloom events. In this study, we examined gene expression among the numerically dominant diatom and dinoflagellate taxa during spring upwelling bloom events to compare the physiological underpinnings of diatom vs. dinoflagellate bloom dynamics. Diatoms, which bloomed following upwelling events, expressed genes related to dissolved inorganic nitrogen utilization, and genes related to the catabolism of chitin that may have prolonged their bloom duration following nitrogen depletion. Conversely, dinoflagellates bloomed under depleted inorganic nitrogen conditions, exhibited less variation in transcriptional activity, and expressed few genes associated with dissolved inorganic nutrients during their bloom. Dinoflagellate profiles exhibited evidence of proteolysis and heterotrophy that may have enabled them to bloom to high abundances under depleted inorganic nutrients. Taken together, diatom and dinoflagellate transcriptional profiles illustrated guild-specific physiologies that are tuned to respond to and thrive under distinct environmental "windows of opportunity."

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716250PMC
http://dx.doi.org/10.3389/fmicb.2023.1287326DOI Listing

Publication Analysis

Top Keywords

diatom dinoflagellate
20
dinoflagellate bloom
8
dinoflagellate taxa
8
bloom events
8
expressed genes
8
dissolved inorganic
8
inorganic nitrogen
8
depleted inorganic
8
inorganic nutrients
8
bloom
7

Similar Publications

Microbial community assembly and co-occurrence patterns in Sanmen bay: A comparative analysis before and after nuclear power plant operation.

Sci Total Environ

December 2024

School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China. Electronic address:

The limited availability of historical data has resulted in the ongoing debate regarding the short-term effects of thermal discharge from nuclear power plants (NPPs) on microbial communities, including both prokaryotes and microeukaryotes. This study focused on the co-occurrence patterns, assembly processes, and community functions in the eutrophic coastal waters of Sanmen Bay (SMB) before and after NPP operation. Gammaproteobacteria and Alphaproteobacteria were the dominant prokaryotic taxa, while Dinoflagellates consistently maintained their prevalence in SMB.

View Article and Find Full Text PDF

Marine microorganisms play a critical role in regulating atmospheric CO concentration via the biological carbon pump. Deposition of continental mineral dust on the sea surface increases carbon sequestration but the interaction between minerals and marine microorganisms is not well understood. We discovered that the interaction of clay minerals with dissolved organic matter and a γ-proteobacterium in seawater increases Transparent Exopolymer Particle (TEP) concentration, leading to organoclay floc formation.

View Article and Find Full Text PDF

Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex.

Proc Natl Acad Sci U S A

December 2024

Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.

Article Synopsis
  • Haptophyta is a taxonomic group with unique plastids derived from red algae; this study focuses on the structure of their photosystem I-light-harvesting complex I (PSI-LHCI) supercomplex using cryoelectron microscopy.
  • The PSI core is made up of 12 subunits that have adapted differently from those in red algae and cryptophytes, losing the PsaO subunit and gaining the PsaK subunit, along with 22 antenna proteins that arrange into a trilayered structure.
  • A previously unidentified pigment-binding subunit, L, was found in the PSI-iFCPI, which helps with energy transfer between the proteins, and computer simulations show that this complex efficiently transfers excitation
View Article and Find Full Text PDF

Species of the dinoflagellate genus Alexandrium can release bioactive extracellular compounds with allelopathic effects (e.g., immobilization, inhibition of growth, photosynthesis or lysis) towards other phytoplanktonic organisms.

View Article and Find Full Text PDF

Ocean alkalinity enhancement (OAE) is currently discussed as a potential negative emission technology to sequester atmospheric carbon dioxide in seawater. Yet, its potential risks or cobenefits for marine ecosystems are still mostly unknown, thus hampering its evaluation for large-scale application. Here, we assessed the impacts OAE may have on plankton communities, focusing on phytoplankton and microzooplankton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!