Background: The association between periodontitis and cardiovascular disease is increasingly recognized. In this research, a prediction model utilizing machine learning (ML) was created and verified to evaluate the likelihood of coronary heart disease in individuals affected by periodontitis.
Methods: We conducted a comprehensive analysis of data obtained from the National Health and Nutrition Examination Survey (NHANES) database, encompassing the period between 2009 and 2014.This dataset comprised detailed information on a total of 3,245 individuals who had received a confirmed diagnosis of periodontitis. Subsequently, the dataset was randomly partitioned into a training set and a validation set at a ratio of 6:4. As part of this study, we conducted weighted logistic regression analyses, both univariate and multivariate, to identify risk factors that are independent predictors for coronary heart disease in individuals who have periodontitis. Five different machine learning algorithms, namely Logistic Regression (LR), Gradient Boosting Machine (GBM), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Classification and Regression Tree (CART), were utilized to develop the model on the training set. The evaluation of the prediction models' performance was conducted on both the training set and validation set, utilizing metrics including AUC (Area under the receiver operating characteristic curve), Brier score, calibration plot, and decision curve analysis (DCA). Additionally, a graphical representation called a nomogram was created using logistic regression to visually depict the predictive model.
Results: The factors that were found to independently contribute to the risk, as determined by both univariate and multivariate logistic regression analyses, encompassed age, race, presence of myocardial infarction, chest pain status, utilization of lipid-lowering medications, levels of serum uric acid and serum creatinine. Among the five evaluated machine learning models, the KNN model exhibited exceptional accuracy, achieving an AUC value of 0.977. The calibration plot and brier score illustrated the model's ability to accurately estimate probabilities. Furthermore, the model's clinical applicability was confirmed by DCA.
Conclusion: Our research showcases the effectiveness of machine learning algorithms in forecasting the likelihood of coronary heart disease in individuals with periodontitis, thereby aiding healthcare professionals in tailoring treatment plans and making well-informed clinical decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716467 | PMC |
http://dx.doi.org/10.3389/fcvm.2023.1296405 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFJ Am Med Inform Assoc
January 2025
Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia.
Objective: We aimed to develop a highly interpretable and effective, machine-learning based risk prediction algorithm to predict in-hospital mortality, intubation and adverse cardiovascular events in patients hospitalised with COVID-19 in Australia (AUS-COVID Score).
Materials And Methods: This prospective study across 21 hospitals included 1714 consecutive patients aged ≥ 18 in their index hospitalization with COVID-19. The dataset was separated into training (80%) and test sets (20%).
Bioinformatics
January 2025
Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom.
Unlabelled: Metabolomics extensively utilizes Nuclear Magnetic Resonance (NMR) spectroscopy due to its excellent reproducibility and high throughput. Both one-dimensional (1D) and two-dimensional (2D) NMR spectra provide crucial information for metabolite annotation and quantification, yet present complex overlapping patterns which may require sophisticated machine learning algorithms to decipher. Unfortunately, the limited availability of labeled spectra can hamper application of machine learning, especially deep learning algorithms which require large amounts of labelled data.
View Article and Find Full Text PDFObjective: The objective of this research was to devise and authenticate a predictive model that employs CT radiomics and deep learning methodologies for the accurate prediction of synchronous distant metastasis (SDM) in clear cell renal cell carcinoma (ccRCC).
Methods: A total of 143 ccRCC patients were included in the training cohort, and 62 ccRCC patients were included in the validation cohort. The CT images from all patients were normalized, and the tumor regions were manually segmented via ITK-SNAP software.
Mol Divers
January 2025
Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
Molecular Property Prediction (MPP) is a fundamental task in important research fields such as chemistry, materials, biology, and medicine, where traditional computational chemistry methods based on quantum mechanics often consume substantial time and computing power. In recent years, machine learning has been increasingly used in computational chemistry, in which graph neural networks have shown good performance in molecular property prediction tasks, but they have some limitations in terms of generalizability, interpretability, and certainty. In order to address the above challenges, a Multiscale Molecular Structural Neural Network (MMSNet) is proposed in this paper, which obtains rich multiscale molecular representations through the information fusion between bonded and non-bonded "message passing" structures at the atomic scale and spatial feature information "encoder-decoder" structures at the molecular scale; a multi-level attention mechanism is introduced on the basis of theoretical analysis of molecular mechanics in order to enhance the model's interpretability; the prediction results of MMSNet are used as label values and clustered in the molecular library by the K-NN (K-Nearest Neighbors) algorithm to reverse match the spatial structure of the molecules, and the certainty of the model is quantified by comparing virtual screening results across different K-values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!