Predicting the placement of biomolecular structures on AFM substrates based on electrostatic interactions.

Front Mol Biosci

Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan.

Published: November 2023

AI Article Synopsis

Article Abstract

Atomic force microscopy (AFM) and high-speed AFM allow direct observation of biomolecular structures and their functional dynamics. Based on scanning the molecular surface of a sample deposited on a supporting substrate by a probing tip, topographic images of its dynamic shape are obtained. Critical to successful AFM observations is a balance between immobilization of the sample while avoiding too strong perturbations of its functional conformational dynamics. Since the sample placement on the supporting substrate cannot be directly controlled in experiments, the relative orientation is unknown, and, due to limitations in the spatial resolution of images, difficult to infer from analysis, thus hampering the interpretation of measurements. We present a method to predict the macromolecular placement of samples based on electrostatic interactions with the AFM substrate and demonstrate applications to HS-AFM observations of the Cas9 endonuclease, an aptamer-protein complex, the Monalysin protein, and the ClpB molecular chaperone. The model also allows predictions of imaging stability taking into account buffer conditions. We implemented the developed method within the freely available BioAFMviewer software package. Predictions based on available structural data can therefore be made even prior to an actual experiment, and the method can be applied for post-experimental analysis of AFM imaging data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717842PMC
http://dx.doi.org/10.3389/fmolb.2023.1264161DOI Listing

Publication Analysis

Top Keywords

biomolecular structures
8
based electrostatic
8
electrostatic interactions
8
supporting substrate
8
afm
6
predicting placement
4
placement biomolecular
4
structures afm
4
afm substrates
4
based
4

Similar Publications

Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization.

View Article and Find Full Text PDF

This research proposes an all-metal metamaterial-based absorber with a novel geometry capable of refractive index sensing in the terahertz (THz) range. The structure consists of four concentric diamond-shaped gold resonators on the top of a gold metal plate; the resonators increase in height by 2 µm moving from the outer to the inner resonators, making the design distinctive. This novel configuration has played a very significant role in achieving multiple ultra-narrow resonant absorption peaks that produce very high sensitivity when employed as a refractive index sensor.

View Article and Find Full Text PDF

Crystal Structures of Antigen-Binding Fragment of Anti-Osteocalcin Antibody KTM219.

Int J Mol Sci

January 2025

Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan.

Osteocalcin is a useful biomarker for bone formation and bone-related diseases. KTM219 is an anti-osteocalcin C-terminal peptide antibody. The single-chain variable region (scFv) and antigen-binding fragment (Fab) of KTM219 are applicable to the Quenchbody (Q-body) immunoassay.

View Article and Find Full Text PDF

Insights into the Allosteric Regulation of Human Hsp90 Revealed by NMR Spectroscopy.

Biomolecules

December 2024

Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, p.p. 660, SI-1001 Ljubljana, Slovenia.

Human heat shock protein 90 (Hsp90) is one of the most important chaperones that play a role in the late stages of protein folding. Errors in the process of the chaperone cycle can lead to diseases such as cancer and neurodegenerative diseases. Therefore, the activity of Hsp90 must be carefully regulated.

View Article and Find Full Text PDF

The use of dietary supplements is widespread in sports and fitness, with many products containing multiple ingredients. Among supplements often consumed to support musculotendinous health, collagen hydrolysate (CH) has gained popularity for its potential in improving joint comfort and function. This single-blind quasi-experimental study investigated the effects of a three-month oral supplementation with a specific CH-based product, Chondrovita FIT (Bone Srl, Rome, Italy), on tendon structure in elite Italian skaters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!